Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 44(7): 760-4, 2012 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-22634756

RESUMO

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. We sequenced and analyzed the whole genomes of 27 HCCs, 25 of which were associated with hepatitis B or C virus infections, including two sets of multicentric tumors. Although no common somatic mutations were identified in the multicentric tumor pairs, their whole-genome substitution patterns were similar, suggesting that these tumors developed from independent mutations, although their shared etiological backgrounds may have strongly influenced their somatic mutation patterns. Statistical and functional analyses yielded a list of recurrently mutated genes. Multiple chromatin regulators, including ARID1A, ARID1B, ARID2, MLL and MLL3, were mutated in ∼50% of the tumors. Hepatitis B virus genome integration in the TERT locus was frequently observed in a high clonal proportion. Our whole-genome sequencing analysis of HCCs identified the influence of etiological background on somatic mutation patterns and subsequent carcinogenesis, as well as recurrent mutations in chromatin regulators in HCCs.


Assuntos
Carcinoma Hepatocelular/genética , Cromatina/genética , Neoplasias Hepáticas/genética , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Feminino , Genoma Viral/genética , Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite C/genética , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Telomerase/genética , Integração Viral/genética
2.
Nat Genet ; 43(5): 464-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21499249

RESUMO

Hepatocellular carcinoma, one of the most common virus-associated cancers, is the third most frequent cause of cancer-related death worldwide. By massively parallel sequencing of a primary hepatitis C virus-positive hepatocellular carcinoma (36× coverage) and matched lymphocytes (>28× coverage) from the same individual, we identified more than 11,000 somatic substitutions of the tumor genome that showed predominance of T>C/A>G transition and a decrease of the T>C substitution on the transcribed strand, suggesting preferential DNA repair. Gene annotation enrichment analysis of 63 validated non-synonymous substitutions revealed enrichment of phosphoproteins. We further validated 22 chromosomal rearrangements, generating four fusion transcripts that had altered transcriptional regulation (BCORL1-ELF4) or promoter activity. Whole-exome sequencing at a higher sequence depth (>76× coverage) revealed a TSC1 nonsense substitution in a subpopulation of the tumor cells. This first high-resolution characterization of a virus-associated cancer genome identified previously uncharacterized mutation patterns, intra-chromosomal rearrangements and fusion genes, as well as genetic heterogeneity within the tumor.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/virologia , Éxons , Rearranjo Gênico , Genes Supressores de Tumor , Variação Genética , Biblioteca Genômica , Genômica , Hepacivirus/patogenicidade , Humanos , Mutação INDEL , Neoplasias Hepáticas/virologia , Mutação , Oncogenes , Polimorfismo de Nucleotídeo Único , Seleção Genética
3.
BMC Genomics ; 9: 222, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18482437

RESUMO

BACKGROUND: The chemokine family plays important roles in cell migration and activation. In humans, at least 44 members are known. Based on the arrangement of the four conserved cysteine residues, chemokines are now classified into four subfamilies, CXC, CC, XC and CX3C. Given that zebrafish is an important experimental model and teleost fishes constitute an evolutionarily diverse group that forms half the vertebrate species, it would be useful to compare the zebrafish chemokine system with those of mammals. Prior to this study, however, only incomplete lists of the zebrafish chemokine genes were reported. RESULTS: We systematically searched chemokine genes in the zebrafish genome and EST databases, and identified more than 100 chemokine genes. These genes were CXC, CC and XC subfamily members, while no CX3C gene was identified. We also searched chemokine genes in pufferfish fugu and Tetraodon, and found only 18 chemokine genes in each species. The majority of the identified chemokine genes are unique to zebrafish or teleost fishes. However, several groups of chemokines are moderately similar to human chemokines, and some chemokines are orthologous to human homeostatic chemokines CXCL12 and CXCL14. Zebrafish also possesses a novel species-specific subfamily consisting of five members, which we term the CX subfamily. The CX chemokines lack one of the two N-terminus conserved cysteine residues but retain the third and the fourth ones. (Note that the XC subfamily only retains the second and fourth of the signature cysteines residues.) Phylogenetic analysis and genome organization of the chemokine genes showed that successive tandem duplication events generated the CX genes from the CC subfamily. Recombinant CXL-chr24a, one of the CX subfamily members on chromosome 24, showed marked chemotactic activity for carp leukocytes. The mRNA was expressed mainly during a certain period of the embryogenesis, suggesting its role in the zebrafish development. CONCLUSION: The phylogenic and genomic organization analyses suggest that a substantial number of chemokine genes in zebrafish were generated by zebrafish-specific tandem duplication events. During such duplications, a novel chemokine subfamily termed CX was generated in zebrafish. Only two human chemokines CXCL12 and CXCL14 have the orthologous chemokines in zebrafish. The diversification observed in the numbers and sequences of chemokines in the fish may reflect the adaptation of the individual species to their respective biological environment.


Assuntos
Quimiocinas/genética , Família Multigênica , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Peixe-Zebra/imunologia , Animais , Sequência de Bases , Quimiocinas/química , Quimiocinas/classificação , Quimiotaxia de Leucócito/efeitos dos fármacos , Primers do DNA/genética , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Especificidade da Espécie , Terminologia como Assunto , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/classificação
4.
J Interferon Cytokine Res ; 27(1): 32-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17266441

RESUMO

Chemokines are a rapidly evolving cytokine gene family. Because of various genome rearrangements after divergence of primates and rodents, humans and mice have different sets of chemokine genes, with humans having members outnumbering those of mice. Here, we report the occurrence of lineage-specific chemokine gene generation or inactivation events within primates. By using human chemokine sequences as queries, we isolated a novel cynomolgus macaque CXC chemokine cDNA. The encoded chemokine, termed CXCL1L (from CXCL1-like) showed the highest similarity to human CXCL1. A highly homologous gene was also found in the rhesus macaque genome. By comparing the genome organization of the major CXC chemokine clusters among the primates, we found that one copy of the duplicated CXCL1 genes turned into a pseudogene in the hominids, whereas the gene in macaques has been maintained as a functionally active CXCL1L. In addition, cynomolgus macaque was found to contain an additional CXC chemokine highly homologous to CXCL3, termed CXCL3L (from CXCL3-like). These results demonstrate the birth-and-death process of a new gene in association with gene duplication within the primates.


Assuntos
Quimiocinas CXC/antagonistas & inibidores , Quimiocinas CXC/genética , Inativação Gênica , Hominidae/genética , Macaca/genética , Sequência de Aminoácidos , Animais , Quimiocina CXCL1 , Quimiocinas CXC/metabolismo , Humanos , Macaca fascicularis , Macaca mulatta , Dados de Sequência Molecular , Pan troglodytes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA