Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(3): 638-652, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294781

RESUMO

A simple approach was developed to computationally construct a polymer dataset by combining simplified molecular-input line-entry system (SMILES) strings of a targeted polymer backbone and a variety of molecular fragments. This method was used to create 14 polymer datasets by combining seven polymer backbones and molecules from two large molecular datasets (MOSES and QM9). Polymer backbones that were studied include four polydimethylsiloxane (PDMS) based backbones, poly(ethylene oxide) (PEO), poly(allyl glycidyl ether) (PAGE), and polyphosphazene (PPZ). The generated polymer datasets can be used for various cheminformatics tasks, including high-throughput screening for gas permeability and selectivity. This study utilized machine learning (ML) models to screen the polymers for CO2/CH4 and CO2/N2 gas separation using membranes. Several polymers of interest were identified. The results highlight that employing an ML model fitted to polymer selectivities leads to higher accuracy in predicting polymer selectivity compared to using the ratio of predicted permeabilities.


Assuntos
Dióxido de Carbono , Polímeros , Polietilenoglicóis , Quimioinformática , Ensaios de Triagem em Larga Escala
2.
ACS Appl Mater Interfaces ; 12(27): 30787-30795, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531150

RESUMO

An effective cross-linking technique allows a viscous and highly gas-permeable hydrophilic polyphosphazene to be cast as solid membrane films. By judicious blending with other polyphosphazenes to improve the mechanical properties, a membrane exhibiting the highest CO2 permeability (610 barrer) among polyphosphazenes combined with a good CO2/N2 selectivity (35) was synthesized and described here. The material demonstrates performance stability after 500 h of exposure to a coal-fired power plant flue gas, making it attractive for use in carbon capture applications. Its CO2/N2 selectivity under conditions up to full humidity is also stable, and although the gas permeability does decline, the performance is fully recovered upon drying. The high molecular weight of these heteropolymers also allows them to be cast as a thin selective layer on an asymmetric porous membrane, yielding a CO2 permeance of 1200 GPU and a CO2/N2 pure gas selectivity of 31, which does not decline over 2000 h. In addition to gas separation membranes, this cross-linked polyphosphazene can potentially be extended to other applications, such as drug delivery or proton exchange membranes, which take advantage of the polyphosphazene's versatile chemistry.

3.
Chem Commun (Camb) ; 52(79): 11768-11771, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27722238

RESUMO

This study presents the fabrication of a new mixed matrix membrane using two microporous polymers: a polymer of intrinsic microporosity PIM-1 and a benzimidazole linked polymer, BILP-101, and their CO2 separation properties from post-combustion flue gas. 17, 30 and 40 wt% loadings of BILP-101 into PIM-1 were tested, resulting in mechanically stable films showing very good interfacial interaction due to the inherent H-bonding capability of the constituent materials. Gas transport studies showed that BILP-101/PIM-1 membranes exhibit high CO2 permeability (7200 Barrer) and selectivity over N2 (15). The selected hybrid membrane was further tested for CO2 separation using actual flue gas from a coal-fired power plant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA