Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(5): 632-643, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38377677

RESUMO

Hepatitis B virus X protein (HBx) plays a crucial role in the development of hepatocellular carcinoma (HCC) associated with hepatitis B virus (HBV) infection. The full-length HBx protein interacts with Bcl-xL and is involved in the HBV replication and cell death processes. The three hydrophobic residues Trp120, Leu123, and Ile127 of the HBx BH3-like motif are essential for the Bcl-xL-binding. On the other hand, various lengths of C-terminal-truncated HBx mutants are frequently detected in HCC tissues, and these mutants, rather than the full-length HBx, appear to be responsible for HCC development. Notably, the region spanning residues 1-120 of HBx [HBx(1 and 120)] has been strongly associated with an increased risk of HCC development. However, the mode of interaction between HBx(1-120) and Bcl-xL remains unclear. HBx(1-120) possesses only Trp120 among the three hydrophobic residues essential for the Bcl-xL-binding. To elucidate this interaction mode, we employed a C-terminal-deleted HBx BH3-like motif peptide composed of residues 101-120. Here, we present the NMR complex structure of Bcl-xL and HBx(101-120). Our results demonstrate that HBx(101-120) binds to Bcl-xL in a weaker manner. Considering the high expression of Bcl-xL in HCC cells, this weak interaction, in conjunction with the overexpression of Bcl-xL in HCC cells, may potentially contribute to HCC development through the interaction between C-terminal-truncated HBx and Bcl-xL.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Transativadores/química , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteína bcl-X/química , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Hepatite B/complicações , Hepatite B/patologia
2.
Biomol NMR Assign ; 16(2): 357-361, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36044106

RESUMO

Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of liver diseases including fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). HBV has the multifunctional protein, HBV X protein (HBx, 154 residues), which plays key roles in HBV replication and liver disease development. Interaction of HBx through its BH3-like motif with the anti-apoptotic protein Bcl-xL leads to HBV replication and induction of apoptosis, resulting in HCC development. Our previous nuclear magnetic resonance (NMR) study revealed that the HBx BH3-like motif peptide (residues 101-136) binds to the common BH3-binding groove of Bcl-xL. Importantly, a C-terminal-truncated HBx, e.g., residues 1-120 of HBx, is strongly associated with the increased risk of HBV-related HCC development. However, the interaction mode between the C-terminal-truncated HBx and Bcl-xL remains unclear. To elucidate this interaction mode, the C-terminal-deleted HBx BH3-like motif peptide (residues 101-120) was used as a model peptide in this study. To facilitate the NMR analysis, we prepared a fusion protein of HBx (101-120) and Bcl-xL connected with five repeats of the glycine-serine dipeptide as a linker. Here, we report the 1H, 13C, and 15N resonance assignments of the fusion protein. This is the first step for the elucidation of the pathogenesis of liver diseases caused by the interaction between the C-terminal-truncated HBx and Bcl-xL.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Dipeptídeos/metabolismo , Glicina/metabolismo , Vírus da Hepatite B/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Ressonância Magnética Nuclear Biomolecular , Serina/metabolismo , Transativadores , Proteínas Virais Reguladoras e Acessórias , Proteína bcl-X/química , Proteína bcl-X/metabolismo
3.
Biochim Biophys Acta Proteins Proteom ; 1869(11): 140708, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343702

RESUMO

Human T-cell leukemia virus type 1 (HTLV-1) infection of host cells is mainly mediated by interactions with the viral envelope glycoprotein surface unit (SU) and three host receptors: heparan sulfate proteoglycan, neuropilin-1 (Nrp1), and glucose transporter type 1. Residues 90-94 of SU are considered as a Nrp1 binding site, and our previous results show that an SU peptide consisting of residues 85-94 can bind directly to the Nrp1 b1 domain with a binding affinity of 7.4 µM. Therefore, the SU peptide is expected to be a good model to investigate the SU-Nrp1 interaction. Recently, the N93D mutation in the Nrp1 b1 binding region of the SU was identified in symptomatic patients with HTLV-1 infections in the Brazilian Amazon. However, it remains unclear how the SU-N93D mutation affects Nrp1 b1 binding. To elucidate the impact of the substituted Asp93 of SU on Nrp1 b1 binding, we analyzed the interaction between the SU-N93D peptide and Nrp1 b1 using isothermal titration calorimetry and nuclear magnetic resonance. The SU-N93D peptide binds directly to Nrp1 b1 with a binding affinity of 3.5 µM, which is approximately two-fold stronger than wild-type. This stronger binding is likely a result of the interaction between the substituted residue Asp93 of the N93D peptide and the four residues Trp301, Lys347, Glu348, and Thr349 of Nrp1 b1. Our results suggest that the interaction of SU Asp93 with the four residues of Nrp1 b1 renders the high affinity of the N93D mutant for Nrp1 b1 binding during HTLV-1 entry.


Assuntos
Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Mutação de Sentido Incorreto , Neuropilina-1/metabolismo , Proteínas do Envelope Viral/metabolismo , Sítios de Ligação , Produtos do Gene env , Infecções por HTLV-I/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/isolamento & purificação , Humanos , Neuropilina-1/química , Ligação Proteica , Proteínas Oncogênicas de Retroviridae , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
4.
Biochim Biophys Acta Proteins Proteom ; 1866(4): 541-548, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29458191

RESUMO

Entry of human T-cell lymphotropic virus type 1 (HTLV-1) into host cells is mainly mediated by interactions between the viral envelope glycoprotein surface unit (SU) and three host receptors: glucose transporter type 1, heparin/heparan sulfate proteoglycan, and neuropilin-1 (Nrp1). Here, we analyzed the interaction between HTLV-1 SU and Nrp1 using nuclear magnetic resonance and isothermal titration calorimetry. We found that two SU peptides, residues 85-94 and residues 304-312, bound directly to the Nrp1 b1 domain with affinities of 7.4 and 17.7 µM, respectively. The binding modes of both peptides were almost identical to those observed for Tuftsin and vascular endothelial growth factor A binding to the Nrp1 b1 domain. These results suggest that the C-terminal region of HTLV-1 SU contains a novel site for direct binding of virus to the Nrp1 b1 domain. Our biophysical characterization of the SU peptides may help in developing inhibitors of HTLV-1 entry.


Assuntos
Produtos do Gene env/química , Vírus Linfotrópico T Tipo 1 Humano/química , Neuropilina-1/química , Proteínas Oncogênicas de Retroviridae/química , Sítios de Ligação , Produtos do Gene env/genética , Produtos do Gene env/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/genética , Vírus Linfotrópico T Tipo 1 Humano/metabolismo , Humanos , Neuropilina-1/genética , Neuropilina-1/metabolismo , Ligação Proteica , Proteínas Oncogênicas de Retroviridae/genética , Proteínas Oncogênicas de Retroviridae/metabolismo
5.
Biochem Biophys Rep ; 9: 159-165, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29114584

RESUMO

Hepatitis B virus X protein (HBx) is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

6.
Biochem Biophys Res Commun ; 450(1): 741-5, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24950407

RESUMO

Hepatitis B virus X protein (HBx) is a multifunctional protein, which is considered to be an essential molecule for viral replication and the development of liver diseases. Recently, it has been demonstrated that HBx can directly interact with Bcl-2 and Bcl-xL through a sequence (termed the BH3-like motif) that is related to the BH3 motif of pro-apoptotic BH3-only proteins. Here, we present the first structural characterization of the HBx BH3-like motif by circular dichroism and NMR spectroscopies. Our results demonstrated that the HBx BH3-like motif has the ability to form an α-helix, and the potential helical region involves residues L108-L134. This is a common characteristic among the BH3 peptides of pro-apoptotic BH3-only proteins, implying that HBx may interact with Bcl-2 and Bcl-xL, by forming an α-helix, similar to the interaction mode of other BH3 peptides with Bcl-2 and Bcl-xL.


Assuntos
Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/ultraestrutura , Transativadores/química , Transativadores/ultraestrutura , Água/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Dados de Sequência Molecular , Conformação Proteica , Proteínas Virais Reguladoras e Acessórias
7.
PLoS One ; 9(3): e91373, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651473

RESUMO

Hepatitis C virus (HCV) infection leads to the development of hepatic diseases, as well as extrahepatic disorders such as B-cell non-Hodgkin's lymphoma (B-NHL). To reveal the molecular signalling pathways responsible for HCV-associated B-NHL development, we utilised transgenic (Tg) mice that express the full-length HCV genome specifically in B cells and develop non-Hodgkin type B-cell lymphomas (BCLs). The gene expression profiles in B cells from BCL-developing HCV-Tg mice, from BCL-non-developing HCV-Tg mice, and from BCL-non-developing HCV-negative mice were analysed by genome-wide microarray. In BCLs from HCV-Tg mice, the expression of various genes was modified, and for some genes, expression was influenced by the gender of the animals. Markedly modified genes such as Fos, C3, LTßR, A20, NF-κB and miR-26b in BCLs were further characterised using specific assays. We propose that activation of both canonical and alternative NF-κB signalling pathways and down-regulation of miR-26b contribute to the development of HCV-associated B-NHL.


Assuntos
Linfócitos B/virologia , Hepacivirus/fisiologia , NF-kappa B/metabolismo , Transdução de Sinais , Animais , Linfócitos B/metabolismo , Núcleo Celular/metabolismo , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Hepatite C/genética , Hepatite C/virologia , Linfoma de Células B/genética , Linfoma de Células B/patologia , Linfoma de Células B/virologia , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transporte Proteico , Transdução de Sinais/genética , Software , Fator de Transcrição RelA/metabolismo
8.
Adv Hematol ; 2011: 835314, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21789042

RESUMO

Hepatitis C virus (HCV) has been recognized as a major cause of chronic liver diseases worldwide. It has been suggested that HCV infects not only hepatocytes but also mononuclear lymphocytes including B cells that express the CD81 molecule, a putative HCV receptor. HCV infection of B cells is the likely cause of B-cell dysregulation disorders such as mixed cryoglobulinemia, rheumatoid factor production, and B-cell lymphoproliferative disorders that may evolve into non-Hodgkin's lymphoma (NHL). Epidemiological data indicate an association between HCV chronic infection and the occurrence of B-cell NHL, suggesting that chronic HCV infection is associated at least in part with B-cell lymphomagenesis. In this paper, we aim to provide an overview of recent literature, including our own, to elucidate a possible role of HCV chronic infection in B-cell lymphomagenesis.

9.
Biochem Biophys Res Commun ; 359(4): 972-8, 2007 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-17572384

RESUMO

p55, a member of the membrane-associated guanylate kinase family, includes a PDZ domain that specifically interacts with the C-terminal region of glycophorin C in the ternary complex of p55, protein 4.1 and glycophorin C. Here we present the first NMR-derived complex structure of the p55 PDZ domain and the C-terminal peptide of glycophorin C, obtained by using a threonine to cysteine (T85C) mutant of the p55 PDZ domain and a phenylalanine to cysteine (F127C) mutant of the glycophorin C peptide. Our NMR results revealed that the two designed mutant molecules retain the specific interaction manner that exists between the wild type molecules and can facilitate the structure determination by NMR, due to the stable complex formation via an intermolecular disulfide bond. The complex structure provides insight into the specific interaction of the p55 PDZ domain with the two key residues, Ile128 and Tyr126, of glycophorin C.


Assuntos
Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/ultraestrutura , Proteínas de Drosophila/química , Proteínas de Drosophila/ultraestrutura , Glicoforinas/química , Glicoforinas/ultraestrutura , Modelos Químicos , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestrutura , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteína 4 de Ligação ao Retinoblastoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA