Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 303: 122397, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37979513

RESUMO

Critical limb ischemia (CLI) occurs when blood flow is restricted through the arteries, resulting in ulcers, necrosis, and chronic wounds in the downstream extremities. The development of collateral arterioles (i.e. arteriogenesis), either by remodeling of pre-existing vascular networks or de novo growth of new vessels, can prevent or reverse ischemic damage, but it remains challenging to stimulate collateral arteriole development in a therapeutic context. Here, we show that a gelatin-based hydrogel, devoid of growth factors or encapsulated cells, promotes arteriogenesis and attenuates tissue damage in a murine CLI model. The gelatin hydrogel is functionalized with a peptide derived from the extracellular epitope of Type 1 cadherins. Mechanistically, these "GelCad" hydrogels promote arteriogenesis by recruiting smooth muscle cells to vessel structures in both ex vivo and in vivo assays. In a murine femoral artery ligation model of CLI, delivery of in situ crosslinking GelCad hydrogels was sufficient to restore limb perfusion and maintain tissue health for 14 days, whereas mice treated with gelatin hydrogels had extensive necrosis and autoamputated within 7 days. A small cohort of mice receiving the GelCad hydrogels were aged out to 5 months and exhibited no decline in tissue quality, indicating durability of the collateral arteriole networks. Overall, given the simplicity and off-the-shelf format of the GelCad hydrogel platform, we suggest it could have utility for CLI treatment and potentially other indications that would benefit from arteriole development.


Assuntos
Circulação Colateral , Neovascularização Fisiológica , Humanos , Camundongos , Animais , Idoso , Neovascularização Fisiológica/fisiologia , Circulação Colateral/fisiologia , Hidrogéis/uso terapêutico , Gelatina/uso terapêutico , Isquemia Crônica Crítica de Membro , Modelos Animais de Doenças , Artéria Femoral/metabolismo , Isquemia/tratamento farmacológico , Isquemia/metabolismo , Necrose , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Membro Posterior/metabolismo
2.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577718

RESUMO

While immunotherapy shows great promise in patients with triple negative breast cancer, many will not respond to treatment, and predicting response is made difficult by significant tumor heterogeneity. Non-invasive imaging of the tumor vasculature enables the monitoring of treatment and has potential to aid in predicting therapeutic response. Here, we use ultrafast power doppler ultrasound (US) to track longitudinal changes in the vascular response to radiotherapy in two breast cancer models to correlate vascular and immune changes in the tumor microenvironment. Tumor volume and vascular index were calculated to evaluate the effects of radiation using US imaging. US tumor measurements and the quantified vascular response to radiation were confirmed with caliper measurements and immunohistochemistry observations, respectively, demonstrating a proof-of-principle method for non-invasive vascular monitoring. Additionally, we found significant infiltration of CD8+ T cells into irradiated tumors 10 days after radiation, which followed a sustained decline in vascular index that was first observed 1 day post-radiation. Taken together, our findings reveal the potential for ultrafast power doppler US to evaluate changes in tumor vasculature that may be indicative of the tumor-immune microenvironment and ultimately improve patient outcomes by predicting response to immunotherapy.

3.
Sci Rep ; 8(1): 16347, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397280

RESUMO

Microbubble contrast agents are widely used in ultrasound imaging and therapy, typically with transmission center frequencies in the MHz range. Currently, an ultrasound center frequency near 250 kHz is proposed for clinical trials in which ultrasound combined with microbubble contrast agents is applied to open the blood brain barrier, since at this low frequency focusing through the human skull to a predetermined location can be performed with reduced distortion and attenuation compared to higher frequencies. However, the microbubble vibrational response has not yet been carefully evaluated at this low frequency (an order of magnitude below the resonance frequency of these contrast agents). In the past, it was assumed that encapsulated microbubble expansion is maximized near the resonance frequency and monotonically decreases with decreasing frequency. Our results indicated that microbubble expansion was enhanced for 250 kHz transmission as compared with the 1 MHz center frequency. Following 250 kHz insonation, microbubble expansion increased nonlinearly with increasing ultrasonic pressure, and was accurately predicted by either the modified Rayleigh-Plesset equation for a clean bubble or the Marmottant model of a lipid-shelled microbubble. The expansion ratio reached 30-fold with 250 kHz at a peak negative pressure of 400 kPa, as compared to a measured expansion ratio of 1.6 fold for 1 MHz transmission at a similar peak negative pressure. Further, the range of peak negative pressure yielding stable cavitation in vitro was narrow (~100 kPa) for the 250 kHz transmission frequency. Blood brain barrier opening using in vivo transcranial ultrasound in mice followed the same trend as the in vitro experiments, and the pressure range for safe and effective treatment was 75-150 kPa. For pressures above 150 kPa, inertial cavitation and hemorrhage occurred. Therefore, we conclude that (1) at this low frequency, and for the large oscillations, lipid-shelled microbubbles can be approximately modeled as clean gas microbubbles and (2) the development of safe and successful protocols for therapeutic delivery to the brain utilizing 250 kHz or a similar center frequency requires consideration of the narrow pressure window between stable and inertial cavitation.


Assuntos
Meios de Contraste , Microbolhas , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica/metabolismo , Meios de Contraste/metabolismo , Imageamento por Ressonância Magnética , Camundongos , Imagem Óptica , Pressão
4.
Ultrasound Med Biol ; 44(10): 2131-2142, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30057134

RESUMO

Plane-wave ultrasound contrast imaging offers a faster, less destructive means for imaging microbubbles compared with traditional ultrasound imaging. Even though many of the most acoustically responsive microbubbles have resonant frequencies in the lower-megahertz range, higher frequencies (>3 MHz) have typically been employed to achieve high spatial resolution. In this work we implement and optimize low-frequency (1.5-4 MHz) plane-wave pulse inversion imaging on a commercial, phased-array imaging transducer in vitro and illustrate its use in vivo by imaging a mouse xenograft model. We found that the 1.8-MHz contrast signal was about four times that acquired at 3.1 MHz on matched probes and nine times greater than echoes received on a higher-frequency probe. Low-frequency imaging was also much more resilient to motion. In vivo, we could identify sub-millimeter vasculature inside a xenograft tumor model and easily assess microbubble half-life. Our results indicate that low-frequency imaging can provide better signal-to-noise because it generates stronger non-linear responses. Combined with high-speed plane-wave imaging, this method could open the door to super-resolution imaging at depth, while high power pulses could be used for image-guided therapeutics.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Meios de Contraste , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Ultrassonografia/métodos , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Nus , Microbolhas , Imagens de Fantasmas
5.
Bioconjug Chem ; 25(2): 231-9, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24433095

RESUMO

The ability to detect and quantify macrophage accumulation can provide important diagnostic and prognostic information for atherosclerotic plaque. We have previously shown that LyP-1, a cyclic 9-amino acid peptide, binds to p32 proteins on activated macrophages, facilitating the visualization of atherosclerotic plaque with PET. Yet, the in vivo plaque accumulation of monomeric [(18)F]FBA-LyP-1 was low (0.31 ± 0.05%ID/g). To increase the avidity of LyP-1 constructs to p32, we synthesized a dendritic form of LyP-1 on solid phase using lysine as the core structural element. Imaging probes (FAM or 6-BAT) were conjugated to a lysine or cysteine on the dendrimer for optical and PET studies. The N-terminus of the dendrimer was further modified with an aminooxy group in order to conjugate LyP-1 and ARAL peptides bearing a ketone. Oxime ligation of peptides to both dendrimers resulted in (LyP-1)4- and (ARAL)4-dendrimers with optical (FAM) and PET probes (6-BAT). For PET-CT studies, (LyP-1)4- and (ARAL)4-dendrimer-6-BAT were labeled with (64)Cu (t1/2 = 12.7 h) and intravenously injected into the atherosclerotic (ApoE(-/-)) mice. After two hours of circulation, PET-CT coregistered images demonstrated greater uptake of the (LyP-1)4-dendrimer-(64)Cu than the (ARAL)4-dendrimer-(64)Cu in the aortic root and descending aorta. Ex vivo images and the biodistribution acquired at three hours after injection also demonstrated a significantly higher uptake of the (LyP-1)4-dendrimer-(64)Cu (1.1 ± 0.26%ID/g) than the (ARAL)4-dendrimer-(64)Cu (0.22 ± 0.05%ID/g) in the aorta. Similarly, subcutaneous injection of the LyP-1-dendrimeric carriers resulted in preferential accumulation in plaque-containing regions over 24 h. In the same model system, ex vivo fluorescence images within aortic plaque depict an increased accumulation and penetration of the (LyP-1)4-dendrimer-FAM as compared to the (ARAL)4-dendrimer-FAM. Taken together, the results suggest that the (LyP-1)4-dendrimer can be applied for in vivo PET imaging of plaque and that LyP-1 could be further exploited for the delivery of therapeutics with multivalent carriers or nanoparticles.


Assuntos
Aterosclerose/diagnóstico por imagem , Radioisótopos de Cobre/química , Dendrímeros/química , Imagem Multimodal , Peptídeos Cíclicos/química , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Sequência de Aminoácidos , Animais , Apolipoproteínas E/genética , Dendrímeros/farmacocinética , Camundongos , Camundongos Knockout , Peptídeos Cíclicos/farmacocinética , Distribuição Tecidual
6.
Ann Biomed Eng ; 41(1): 89-99, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22855121

RESUMO

The identification of novel, synthetic targeting ligands to endothelial receptors has led to the rapid development of targeted nanoparticles for drug, gene and imaging probe delivery. Central to development and optimization are effective models for assessing particle binding in vitro. Here, we developed a simple and cost effective method to quantitatively assess nanoparticle accumulation under physiologically-relevant laminar flow. We designed reversibly vacuum-sealed PDMS microfluidic chambers compatible with 35 mm petri dishes, which deliver uniform or gradient shear stress. These chambers have sufficient surface area for facile cell collection for particle accumulation quantitation through FACS. We tested this model by synthesizing and flowing liposomes coated with APN (K (D) ~ 300 µM) and VCAM-1-targeting (K (D) ~ 30 µM) peptides over HUVEC. Particle binding significantly increased with ligand concentration (up to 6 mol%) and decreased with excess PEG. While the accumulation of particles with the lower affinity ligand decreased with shear, accumulation of those with the higher affinity ligand was highest in a low shear environment (2.4 dyne/cm(2)), as compared with greater shear or the absence of shear. We describe here a robust flow chamber model that is applied to optimize the properties of 100 nm liposomes targeted to inflamed endothelium.


Assuntos
Microfluídica , Nanopartículas , Anticorpos Monoclonais/farmacologia , Antígenos CD13/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Ligantes , Lipossomos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA