Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10288, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355753

RESUMO

Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.


Assuntos
Hiperfagia , Obesidade , Proteína Desacopladora 1 , Animais , Feminino , Masculino , Camundongos , Hiperfagia/tratamento farmacológico , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
2.
Nat Med ; 27(11): 1941-1953, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34608330

RESUMO

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Assuntos
Adipócitos/metabolismo , Ciclo Celular/fisiologia , Senescência Celular/fisiologia , Hiperinsulinismo/patologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Diferenciação Celular/fisiologia , Ciclina D1/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Metformina/farmacologia
3.
Gastroenterology ; 161(1): 318-332.e9, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819482

RESUMO

BACKGROUND & AIMS: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. METHODS: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. RESULTS: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. CONCLUSIONS: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.


Assuntos
Proteína 3 do Linfoma de Células B/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Animais , Proteína 3 do Linfoma de Células B/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Carga Tumoral , Células Tumorais Cultivadas
4.
Artigo em Inglês | MEDLINE | ID: mdl-24021912

RESUMO

Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents.


Assuntos
Metabolismo Basal , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Hepáticas/metabolismo , Murinae/fisiologia , Torpor , Trifosfato de Adenosina/biossíntese , Animais , Temperatura Corporal , Rim/metabolismo , Fígado/metabolismo , Mitocôndrias Cardíacas/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Especificidade de Órgãos , Consumo de Oxigênio
5.
Biochem J ; 447(1): 175-84, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22849606

RESUMO

GSK3ß (glycogen synthase kinase 3ß) is a ubiquitous kinase that plays a key role in multiple intracellular signalling pathways, and increased GSK3ß activity is implicated in disorders ranging from cancer to Alzheimer's disease. In the present study, we provide the first evidence of increased hypothalamic signalling via GSK3ß in leptin-deficient Lep(ob/ob) mice and show that intracerebroventricular injection of a GSK3ß inhibitor acutely improves glucose tolerance in these mice. The beneficial effect of the GSK3ß inhibitor was dependent on hypothalamic signalling via PI3K (phosphoinositide 3-kinase), a key intracellular mediator of both leptin and insulin action. Conversely, neuron-specific overexpression of GSK3ß in the mediobasal hypothalamus exacerbated the hyperphagia, obesity and impairment of glucose tolerance induced by a high-fat diet, while having little effect in controls fed standard chow. These results demonstrate that increased hypothalamic GSK3ß signalling contributes to deleterious effects of leptin deficiency and exacerbates high-fat diet-induced weight gain and glucose intolerance.


Assuntos
Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipotálamo/enzimologia , Animais , Núcleo Arqueado do Hipotálamo/enzimologia , Núcleo Arqueado do Hipotálamo/fisiologia , Sequência de Bases , Primers do DNA/genética , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/enzimologia , Intolerância à Glucose/etiologia , Quinase 3 da Glicogênio Sintase/deficiência , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Hipotálamo/fisiologia , Leptina/deficiência , Leptina/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/enzimologia , Obesidade/etiologia , Transdução de Sinais , Aumento de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA