RESUMO
The inflammatory response may contribute to retinal pigment epithelial (RPE) dysfunction associated with the pathogenesis of age-related macular degeneration (AMD). We investigated whether the inflammatory response affects the expression of long coding RNAs (lncRNAs) in human RPE-derived ARPE-19 cells. This class of regulatory RNA molecules recently came to prominence due to their involvement in many pathophysiological processes. A proinflammatory cytokine mixture consisting of IFN-γ, IL-1ß and TNF-α altered the expression several lncRNAs including BANCR in these cells. The cytokine responsible for increasing BANCR expression in ARPE-19 cells was found to be IFN-γ. BANCR expression induced by IFN-γ was suppressed when STAT1 phosphorylation was blocked by JAK inhibitor 1. Thus, proinflammatory cytokines could modulate the expression of lncRNAs in RPE cells and IFN-γ could upregulate the expression of BANCR by activating JAK-STAT1 signaling pathway.
Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mediadores da Inflamação/metabolismo , Interferon gama/metabolismo , RNA Longo não Codificante/genética , Epitélio Pigmentado da Retina/metabolismo , Adulto , Linhagem Celular , Humanos , RNA Longo não Codificante/metabolismoRESUMO
PURPOSE: The RPE cell line ARPE-19 provides a dependable and widely used alternative to native RPE. However, replication of the native RPE phenotype becomes more difficult because these cells lose their specialized phenotype after multiple passages. Compounding this problem is the widespread use of ARPE-19 cells in an undifferentiated state to attempt to model RPE functions. We wished to determine whether suitable culture conditions and differentiation could restore the RPE-appropriate expression of genes and proteins to ARPE-19, along with a functional and morphological phenotype resembling native RPE. We compared the transcriptome of ARPE-19 cells kept in long-term culture with those of primary and other human RPE cells to assess the former's inherent plasticity relative to the latter. METHODS: ARPE-19 cells at passages 9 to 12 grown in DMEM containing high glucose and pyruvate with 1% fetal bovine serum were differentiated for up to 4 months. Immunocytochemistry was performed on ARPE-19 cells grown on filters. Total RNA extracted from ARPE-19 cells cultured for either 4 days or 4 months was used for RNA sequencing (RNA-Seq) analysis using a 2 × 50 bp paired end protocol. The RNA-Seq data were analyzed to identify the affected pathways and recognize shared ontological classification among differentially expressed genes. RPE-specific mRNAs and miRNAs were assessed with quantitative real-time (RT)-PCR, and proteins with western blotting. RESULTS: ARPE-19 cells grown for 4 months developed the classic native RPE phenotype with heavy pigmentation. RPE-expressed genes, including RPE65, RDH5, and RDH10, as well as miR-204/211, were greatly increased in the ARPE-19 cells maintained at confluence for 4 months. The RNA-Seq analysis provided a comprehensive view of the relative abundance and differential expression of the genes in the differentiated ARPE-19 cells. Of the 16,757 genes with detectable signals, nearly 1,681 genes were upregulated, and 1,629 genes were downregulated with a fold change of 2.5 or more differences between 4 months and 4 days of culture. Gene Ontology analysis showed that the upregulated genes were associated with visual cycle, phagocytosis, pigment synthesis, cell differentiation, and RPE-related transcription factors. The majority of the downregulated genes play a role in cell cycle and proliferation. CONCLUSIONS: The ARPE-19 cells cultured for 4 months developed a phenotype characteristic of native RPE and expressed proteins, mRNAs, and miRNAs characteristic of the RPE. Comparison of the ARPE-19 RNA-Seq data set with that of primary human fetal RPE, embryonic stem cell-derived RPE, and native RPE revealed an important overall similar expression ratio among all the models and native tissue. However, none of the cultured models reached the absolute values in the native tissue. The results of this study demonstrate that low-passage ARPE-19 cells can express genes specific to native human RPE cells when appropriately cultured and differentiated.
Assuntos
Diferenciação Celular/genética , Perfilação da Expressão Gênica , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Linhagem Celular , Regulação para Baixo/genética , Células Epiteliais/metabolismo , Ontologia Genética , Humanos , Melaninas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose/genética , Fenótipo , Retinoides/metabolismo , Regulação para Cima/genéticaRESUMO
PURPOSE: Proinflammatory cytokines interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1ß) secreted by infiltrating lymphocytes or macrophages may play a role in triggering RPE dysfunction associated with age-related macular degeneration (AMD). Binding of these proinflammatory cytokines to their specific receptors residing on the RPE cell surface can activate signaling pathways that, in turn, may dysregulate cellular gene expression. The purpose of the present study was to investigate whether IFN-γ, TNF-α, and IL-1ß have an adverse effect on the expression of genes essential for RPE function, employing the RPE cell line ARPE-19 as a model system. METHODS: ARPE-19 cells were cultured for 3-4 months until they exhibited epithelial morphology and expressed mRNAs for visual cycle genes. The differentiated cells were treated with IFN-γ, TNF-α, and/or IL-1ß, and gene expression was analyzed with real-time PCR analysis. Western immunoblotting was employed for the detection of proteins. RESULTS: Proinflammatory cytokines (IFN-γ + TNF-α + IL-1ß) greatly increased the expression of chemokines and cytokines in cultured ARPE-19 cells that exhibited RPE characteristics. However, this response was accompanied by markedly decreased expression of genes important for RPE function, such as CDH1, RPE65, RDH5, RDH10, TYR, and MERTK. This was associated with decreased expression of the genes MITF, TRPM1, and TRPM3, as well as microRNAs miR-204 and miR-211, which are known to regulate RPE-specific gene expression. The decreased expression of the epithelial marker gene CDH1 was associated with increased expression of mesenchymal marker genes (CDH2, VIM, and CCND1) and epithelial-mesenchymal transition (EMT) promoting transcription factor genes (ZEB1 and SNAI1). CONCLUSIONS: RPE cells exposed to proinflammatory cytokines IFN-γ, TNF-α, and IL-1ß showed decreased expression of key genes involved in the visual cycle, epithelial morphology, and phagocytosis. This adverse effect of proinflammatory cytokines, which could be secreted by infiltrating lymphocytes or macrophages, on the expression of genes indispensable for RPE function may contribute to the RPE dysfunction implicated in AMD pathology.
Assuntos
Citocinas/genética , Proteínas do Olho/genética , Regulação da Expressão Gênica/fisiologia , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Oxirredutases do Álcool/genética , Western Blotting , Caderinas/genética , Proteínas de Transporte/genética , Linhagem Celular , Quimiocinas/genética , Humanos , Fator de Transcrição Associado à Microftalmia/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Epitélio Pigmentado da Retina/metabolismo , cis-trans-Isomerases/genéticaRESUMO
Stearoyl-CoA desaturase (SCD, SCD1), an endoplasmic reticulum (ER) resident protein and a rate-limiting enzyme in monounsaturated fatty acid biosynthesis, regulates cellular functions by controlling the ratio of saturated to monounsaturated fatty acids. Increase in SCD expression is strongly implicated in the proliferation and survival of cancer cells, whereas its decrease is known to impair proliferation, induce apoptosis, and restore insulin sensitivity. We examined whether fenretinide, (N-(4-hydroxyphenyl)retinamide, 4HPR), which induces apoptosis in cancer cells and recently shown to improve insulin sensitivity, can modulate the expression of SCD. We observed that fenretinide decreased SCD protein and enzymatic activity in the ARPE-19 human retinal pigment epithelial cell line. Increased expression of BiP/GRP78, ATF4, and GADD153 implicated ER stress. Tunicamycin and thapsigargin, compounds known to induce ER stress, also decreased the SCD protein. This decrease was completely blocked by the proteasome inhibitor MG132. In addition, PYR41, an inhibitor of ubiquitin activating enzyme E1, blocked the fenretinide-mediated decrease in SCD. Immunoprecipitation analysis using anti-ubiquitin and anti-SCD antibodies and the blocking of SCD loss by PYR41 inhibition of ubiquitination further corroborate that fenretinide mediates the degradation of SCD in human RPE cells via the ubiquitin-proteasome dependent pathway. Therefore, the effect of fenretinide on SCD should be considered in its potential therapeutic role against cancer, type-2 diabetes, and retinal diseases.
Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Fenretinida/farmacologia , Epitélio Pigmentado da Retina/citologia , Estearoil-CoA Dessaturase/metabolismo , Ubiquitina/metabolismo , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Fisiológico/efeitos dos fármacosRESUMO
PURPOSE: The inflammatory response of the retinal pigment epithelium (RPE) is implicated in the pathogenesis of age-related macular degeneration. The microRNAs miR-146a and miR-146b-5p can regulate the inflammatory process by attenuating cytokine signaling via the nuclear factor-κB pathway. The aim of the present study is to investigate the expression of miR-146a and miR-146b-5p in human RPE cells and their response to proinflammatory cytokines. METHODS: Confluent cultures of RPE cells established from adult human donor eyes were treated with the proinflammatory cytokines interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß. The expression of microRNAs was analyzed by real-time PCR using total RNA fraction. The retinal pigment epithelial cell line ARPE-19 was employed to analyze the promoter activity of the genes encoding miR-146a and miR-146b-5p. STAT1-binding activity of oligonucleotides was analyzed by electrophoretic mobility shift assay. ARPE-19 cells were transiently transfected with miR-146a and miR-146b-5p mimics for the analysis of IRAK1 expression by western immunoblotting. RESULTS: Real-time PCR analysis showed that miR-146a and 146b-5p are expressed in RPE cells. The cells responded to proinflammatory cytokines (IFN-γ + TNF-α + IL-1ß) by highly increasing the expression of both miR-146a and miR-146b-5p. This was associated with an increase in the expression of transcripts for CCL2, CCL5, CXCL9, CXCL10, and IL-6, and a decrease in that for HMOX1. The miR-146a induction was more dependent on IL-1ß, since its omission from the cytokine mix resulted in a greatly reduced response. Similarly, the induction of miR-146b-5p was more dependent on IFN-γ, since its omission from the cytokine mix minimized the effect. In addition, the increase in MIR146B promoter activity by the cytokine mix was effectively blocked by JAK inhibitor 1, a known inhibitor of the JAK/STAT signaling pathway. The expression of IRAK1 protein was decreased when ARPE-19 cells were transiently transfected with either miR-146a mimic or miR-146b-5p mimic. CONCLUSIONS: Our results clearly show that both miR-146a and miR-146b-5p are expressed in human RPE cells in culture and their expression is highly induced by proinflammatory cytokines (IFN-γ + TNF-α + IL-1ß). The induction of miR-146a showed a dependency on IL-1ß, while that of miR-146b-5p on IFN-γ. Our results show for the first time that miR-146b-5p expression is regulated by IFN-γ, potentially via the JAK/STAT pathway. These two microRNAs could play a role in inflammatory processes underlying age-related macular degeneration or other retinal degenerative diseases through their ability to negatively regulate the nuclear factor-κB pathway by targeting the expression of IRAK1.
Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Interleucina-1beta/farmacologia , MicroRNAs/genética , Epitélio Pigmentado da Retina/citologia , Fator de Necrose Tumoral alfa/farmacologia , Adulto , Sequência de Bases , Ensaio de Desvio de Mobilidade Eletroforética , Células Epiteliais/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Mediadores da Inflamação/farmacologia , Quinases Associadas a Receptores de Interleucina-1/genética , Quinases Associadas a Receptores de Interleucina-1/metabolismo , MicroRNAs/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/metabolismo , Fatores de TempoRESUMO
PURPOSE: MicroRNAs (miRNAs) are important regulators of many cellular functions due to their ability to target mRNAs for degradation or translational inhibition. Previous studies have reported that the expression of microRNA-9 (miR-9) is regulated by retinoic acid and reactive oxygen species (ROS). We have previously shown that N-(4-hydroxyphenyl)-retinamide (4HPR), a retinoic acid derivative, induces ROS generation and apoptosis in cultured human retinal pigment epithelial (RPE) cells, known as ARPE-19 cells. The aim of the present study was to investigate the expression of miR-9 in ARPE-19 cells in response to 4HPR treatment, and to identify other miRNAs normally expressed in these cells. METHODS: ARPE-19 cells in culture were treated with 4HPR, the total RNA fractions were isolated, and the expression of various miRNAs and mRNAs was analyzed using real-time PCR. The miRNA expression profile of ARPE-19 cells was analyzed using microarray hybridization. RESULTS: Treatment of ARPE-19 cells with 4HPR resulted in apoptosis characterized by the increased expression of HMOX1 and GADD153 genes. A twofold increase in the expression of miR-9 was also observed during this response. Potential binding sites for the transcription factors encoded by CEBPA and CEBPB genes were found to be present in the putative promoter regions of all three genes encoding miR-9. 4HPR-induced miR-9 expression was associated with parallel increases in the expression of these transcription factor genes. 5-Aza-2'-deoxycytidine, a methyl transferase inhibitor, also increased the expression of miR-9 in ARPE-19 cells. Microarray hybridization analysis identified let-7b, let-7a, miR-125b, miR-24, miR-320, miR-23b, let-7e, and let-7d as the most abundant miRNAs normally expressed in ARPE-19 cells. These miRNAs are known to regulate cell growth, differentiation or development. The 4HPR treatment increased the expression of miR-16, miR-26b, miR-23a, and miR-15b in ARPE-19 cells, although these increases were modest when compared to the increase in the expression of miR-9. CONCLUSIONS: Our studies demonstrate that miR-9 is expressed in the RPE cell line ARPE-19, and its expression is increased by a retinoic acid derivative and by an inhibitor of promoter hypermethylation. Several miRNAs with inherent ability to regulate cell growth, differentiation and development are also normally expressed in ARPE-19 cells. Thus, miR-9 and other miRNAs could be important in maintaining RPE cell function.
Assuntos
Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fenretinida/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/genética , Epitélio Pigmentado da Retina/citologia , Apoptose/efeitos dos fármacos , Azacitidina/farmacologia , Sequência de Bases , Sítios de Ligação , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Linhagem Celular , Humanos , MicroRNAs/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Reprodutibilidade dos Testes , Retina/efeitos dos fármacos , Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Insulin-like growth factor (IGF)-binding protein-5 (IGFBP5), an important member of the IGF axis involved in regulating cell growth and differentiation, acts by modulating IGF signaling and also by IGF-independent mechanisms. We identified IGFBP5 by microarray analysis as a gene differentially regulated during N-(4-hydroxyphenyl)retinamide (4HPR)-induced neuronal differentiation of human retinal pigment epithelial (RPE) cells. IGFBP5 is expressed in human RPE cells, and its expression, mRNA as well as protein, is greatly decreased during the 4HPR-induced neuronal differentiation. Exogenous IGFBP5 does not block the neuronal differentiation indicating that IGFBP5 down-regulation may not be a prerequisite for the neuronal differentiation. IGFBP5 down-regulation, similar to neuronal differentiation, is mediated by the MAPK pathway since U0126, an inhibitor of MEK1/2, effectively blocked it. The overexpression of transcription factor CCAAT/enhancer binding protein-beta (C/EBPbeta) inhibited the 4HPR-induced down-regulation of IGFBP5 expression and the neuronal differentiation of RPE cells. Interestingly, the binding of C/EBPbeta to the IGFBP5 promoter was decreased by the 4HPR treatment as indicated by gel shift and chromatin immunoprecipitation analyses. Further, the deletion of C/EBP response element from IGFBP5 promoter markedly decreased the basal promoter activity and abolished its responsiveness to 4HPR treatment in reporter assays, suggesting that the expression of IGFBP5 is regulated by C/EBP. Thus, our results clearly demonstrate that the IGFBP5 expression is down-regulated during 4HPR-induced neuronal differentiation of human RPE cells through a MAPK signal transduction pathway involving C/EBPbeta.
Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Fenretinida/farmacologia , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Epitélio Pigmentado da Retina/citologia , Antineoplásicos/farmacologia , Proteínas Estimuladoras de Ligação a CCAAT/genética , Linhagem Celular , Inibidores Enzimáticos/metabolismo , Células Epiteliais/citologia , Regulação da Expressão Gênica , Humanos , Proteína 5 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Análise em Microsséries , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais/fisiologiaRESUMO
We have shown previously that N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid derivative, induces neuronal differentiation in cultured human retinal pigment epithelial (RPE) cells [Chen et al., J. Neurochem., 84 (2003), 972]. We asked the question whether the mitogen-activated protein kinase (MAPK) pathway is involved in the regulation of the 4HPR-induced neuronal differentiation of RPE (ARPE-19) cells. When we treated ARPE-19 cells with 4HPR, c-Raf and MEK1/2 kinase were activated resulting in activation of the downstream effector ERK1/2 and of SAPK/JNK. By blocking the upstream kinase MEK1/2 with specific inhibitor U0126 we abrogated the 4HPR-induced phosphorylation of ERK1/2 and SAPK/JNK, indicating that the neuronal differentiation occurs through a positive cross-talk between the ERK and the SAPK/JNK pathways. Both U0126 and the suppression of ERK1/2 expression with small interfering RNA effectively blocked the 4HPR-induced neuronal differentiation of RPE cells and the expression of calretinin. The activated ERK1/2 then induced a sequential activation of p90RSK, and increase in phosphorylation of transcription factors c-fos and c-jun leading to transcriptional activation of AP-1. Taken together, our results clearly demonstrate that c-Raf/MEK1/2 signaling cascade involving ERK1/2 plays a central role in mediating the 4HPR-induced neuronal differentiation and calretinin expression in the human ARPE-19 retinal pigment epithelial cell line.
Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fenretinida/farmacologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Calbindina 2 , Linhagem Celular , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Epitélio Pigmentado Ocular/citologia , RNA Interferente Pequeno/farmacologia , Proteína G de Ligação ao Cálcio S100/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de TempoRESUMO
N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid (RA) derivative and a potential cancer preventive agent, is known to exert its chemotherapeutic effects in cancer cells through induction of apoptosis. Earlier work from our laboratory has shown that relatively low concentrations of 4HPR induce neuronal differentiation of cultured human retinal pigment epithelial (ARPE-19) cells (Chen et al., 2003, J Neurochem 84:972-981). However, at higher concentrations of 4HPR, these cells showed morphological changes including cell shrinkage and cell death. Here we demonstrate that ARPE-19 cells treated with 4HPR exhibit a dose- and time-dependent induction of apoptosis as evidenced by morphological changes, mono- and oligonucleosome generation, and increased activity of caspases 2 and 3. The 4HPR-induced apoptosis as well as the activation of caspases 2 and 3 were blocked by both retinoic acid receptors (RAR) pan-antagonists, AGN193109 and AGN194310, and by an RARalpha-specific antagonist AGN194301. 4HPR treatment also increased reactive oxygen species (ROS) generation in ARPE-19 cells in a time-dependent manner as determined from the oxidation of 2',7'-dichlorofluorescin. In addition, the increase in the expression of heme oxygenase-1 (HO-1), a stress response protein, and the growth arrest and DNA damage-inducible transcription factor 153 (Gadd153) in response to the ROS generation were also blocked by these receptor antagonists. Pyrrolidine dithiocarbamate (PDTC), a free-radical scavenger, inhibited 4HPR-induced ROS generation, the expression of its downstream mediator, Gadd153, and apoptosis in the pretreated cells. Therefore, our results, clearly demonstrate that 4HPR induces apoptosis in ARPE-19 cells and that RARs mediate this process by regulating ROS generation as well as the expression of Gadd153 and HO-1.
Assuntos
Apoptose/fisiologia , Células Epiteliais , Fenretinida/farmacologia , Heme Oxigenase-1/metabolismo , Epitélio Pigmentado Ocular/citologia , Espécies Reativas de Oxigênio/metabolismo , Receptores do Ácido Retinoico/metabolismo , Fator de Transcrição CHOP/metabolismo , Anticarcinógenos/farmacologia , Antioxidantes/metabolismo , Caspase 2/genética , Caspase 2/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Heme Oxigenase-1/genética , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Receptores do Ácido Retinoico/antagonistas & inibidores , Receptores do Ácido Retinoico/genética , Fator de Transcrição CHOP/genéticaRESUMO
ARPE-19, a human retinal pigment epithelial (RPE) cell line, has been widely used in studies of RPE function as well as gene expression. Here, we report the novel finding that N-(4-hydroxyphenyl)retinamide (fenretinide), a synthetic retinoic acid derivative and a potential chemopreventive agent against cancer, induced the differentiation of ARPE-19 cells into a neuronal phenotype. The treated cells lost their epithelial phenotype and exhibited a typical neuronal shape with long processes (four to five times longer than the cell body). The onset of fenretinide-induced neuronal differentiation was dose and time dependent, started within 1-2 days, and lasted at least 4 weeks. Immunohistochemical studies indicated that the expression of neurofilament proteins (NF160 and NF200), calretinin and neural cell adhesion molecule was increased in these differentiated cells. Western blot analysis indicated that cellular retinaldehyde-binding protein, which is normally expressed in RPE cells, was decreased in treated cells. Protein analysis on a two-dimensional gel followed by matrix-assisted laser desorption ionization-time of flight mass spectrometric analysis demonstrated that heat-shock protein 70 was increased after fenretinide treatment. Thus, fenretinide, a synthetic retinoid, is able to induce neuronal differentiation of human RPE cells in culture.