Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 9(4): e14752, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600071

RESUMO

Xenin25 has a variety of physiological functions in the Gastrointestinal (GI) tract, including ion transport and motility. However, the motility responses in the colon induced by Xenin25 remain poorly understood. Therefore, the effect of Xenin25 on the spontaneous circular muscle contractions of the rat distal colon was investigated using organ bath chambers and immunohistochemistry. Xenin25 induced the inhibition followed by postinhibitory spontaneous contractions with a higher frequency in the rat distal colon. This inhibitory effect of Xenin25 was significantly suppressed by TTX but not by atropine. The inhibitory time (the duration of inhibition) caused by Xenin25 was shortened by the NTSR1 antagonist SR48692, the NK1R antagonist CP96345, the VPAC2 receptor antagonist PG99-465, the nitric oxide-sensitive guanylate-cyclase inhibitor ODQ, and the Ca2+ -dependent K+ channel blocker apamin. The higher frequency of postinhibitory spontaneous contractions induced by Xenin25 was also attenuated by ODQ and apamin. SP-, NOS-, and VIP-immunoreactive neurons were detected in the myenteric plexus (MP) of the rat distal colon. Small subsets of the SP-positive neurons were also Calbindin positive. Most of the VIP-positive neurons were also NOS positive, and small subsets of the NK1R-positive neurons were also VIP positive. Based on the present results, we propose the following mechanism. Xenin25 activates neuronal NTSR1 on the SP neurons of IPANs, and transmitters from the VIP and apamin-sensitive NO neurons synergistically inhibit the spontaneous circular muscle contractions via NK1R. Subsequently, the postinhibitory spontaneous contractions are induced by the offset of apamin-sensitive NO neuron activation via the interstitial cells of Cajal. In addition, Xenin25 also activates the muscular NTSR1 to induce relaxation. Thus, Xenin25 is considered to be an important modulator of post prandial circular muscle contraction of distal colon since the release of Xenin25 from enteroendocrine cells is stimulated by food intake.


Assuntos
Colo/inervação , Sistema Nervoso Entérico/efeitos dos fármacos , Fármacos Gastrointestinais/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/inervação , Neurotensina/farmacologia , Animais , Sistema Nervoso Entérico/metabolismo , Técnicas In Vitro , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios Nitrérgicos/efeitos dos fármacos , Neurônios Nitrérgicos/metabolismo , Ratos Sprague-Dawley , Receptores de Neurotensina/metabolismo , Substância P/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 318(6): G1070-G1087, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32390462

RESUMO

Lipopolysaccharides (LPS) are potent pro-inflammatory molecules that enter the systemic circulation from the intestinal lumen by uncertain mechanisms. We investigated these mechanisms and the effect of exogenous glucagon-like peptide-2 (GLP-2) on LPS transport in the rodent small intestine. Transmucosal LPS transport was measured in Ussing-chambered rat jejunal mucosa. In anesthetized rats, the appearance of fluorescein isothiocyanate (FITC)-LPS into the portal vein (PV) and the mesenteric lymph was simultaneously monitored after intraduodenal perfusion of FITC-LPS with oleic acid and taurocholate (OA/TCA). In vitro, luminally applied LPS rapidly appeared in the serosal solution only with luminal OA/TCA present, inhibited by the lipid raft inhibitor methyl-ß-cyclodextrin (MßCD) and the CD36 inhibitor sulfosuccinimidyl oleate (SSO), or by serosal GLP-2. In vivo, perfusion of FITC-LPS with OA/TCA rapidly increased FITC-LPS appearance into the PV, followed by a gradual increase of FITC-LPS into the lymph. Rapid PV transport was inhibited by the addition of MßCD or by SSO, whereas transport into the lymph was inhibited by chylomicron synthesis inhibition. Intraveous injection of the stable GLP-2 analog teduglutide acutely inhibited FITC-LPS transport into the PV, yet accelerated FITC-LPS transport into the lymph via Nω-nitro-l-arginine methyl ester (l-NAME)- and PG97-269-sensitive mechanisms. In vivo confocal microscopy in mouse jejunum confirmed intracellular FITC-LPS uptake with no evidence of paracellular localization. This is the first direct demonstration in vivo that luminal LPS may cross the small intestinal barrier physiologically during fat absorption via lipid raft- and CD36-mediated mechanisms, followed by predominant transport into the PV, and that teduglutide inhibits LPS uptake into the PV in vivo.NEW & NOTEWORTHY We report direct in vivo confirmation of transcellular lipopolysaccharides (LPS) uptake from the intestine into the portal vein (PV) involving CD36 and lipid rafts, with minor uptake via the canonical chylomicron pathway. The gut hormone glucagon-like peptide-2 (GLP-2) inhibited uptake into the PV. These data suggest that the bulk of LPS absorption is via the PV to the liver, helping clarify the mechanism of LPS transport into the PV as part of the "gut-liver" axis. These data do not support the paracellular transport of LPS, which has been implicated in the pathogenesis of the "leaky gut" syndrome.


Assuntos
Gorduras/metabolismo , Intestino Delgado/metabolismo , Lipopolissacarídeos/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Fármacos Gastrointestinais/farmacologia , Células HEK293 , Humanos , Intestino Delgado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
3.
Dig Dis Sci ; 65(9): 2605-2618, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32006214

RESUMO

BACKGROUND: Circulating endotoxin (lipopolysaccharide, LPS) increases the gut paracellular permeability. We hypothesized that glucagon-like peptide-2 (GLP-2) acutely reduces LPS-related increased intestinal paracellular permeability by a mechanism unrelated to its intestinotrophic effect. METHODS: We assessed small intestinal paracellular permeability in vivo by measuring the appearance of intraduodenally perfused FITC-dextran 4000 (FD4) into the portal vein (PV) in rats 1-24 h after LPS treatment (5 mg/kg, ip). We also examined the effect of a stable GLP-2 analog teduglutide (TDG) on FD4 permeability. RESULTS: FD4 movement into the PV was increased 6 h, but not 1 or 3 h after LPS treatment, with increased PV GLP-2 levels and increased mRNA expressions of proinflammatory cytokines and proglucagon in the ileal mucosa. Co-treatment with a GLP-2 receptor antagonist enhanced PV FD4 concentrations. PV FD4 concentrations 24 h after LPS were higher than FD4 concentrations 6 h after LPS, reduced by exogenous GLP-2 treatment given 6 or 12 h after LPS treatment. FD4 uptake measured 6 h after LPS was reduced by TDG 3 or 6 h after LPS treatment. TDG-associated reduced FD4 uptake was reversed by the VPAC1 antagonist PG97-269 or L-NAME, not by EGF or IGF1 receptor inhibitors. CONCLUSIONS: Systemic LPS releases endogenous GLP-2, reducing LPS-related increased permeability. The therapeutic window of exogenous GLP-2 administration is at minimum within 6-12 h after LPS treatment. Exogenous GLP-2 treatment is of value in the prevention of increased paracellular permeability associated with endotoxemia.


Assuntos
Endotoxemia/prevenção & controle , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 2/agonistas , Absorção Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Dextranos/sangue , Modelos Animais de Doenças , Endotoxemia/sangue , Endotoxemia/induzido quimicamente , Fluoresceína-5-Isotiocianato/análogos & derivados , Receptor do Peptídeo Semelhante ao Glucagon 2/metabolismo , Mediadores da Inflamação/metabolismo , Intestino Delgado/metabolismo , Lipopolissacarídeos , Masculino , Permeabilidade , Veia Porta , Ratos Sprague-Dawley , Fatores de Tempo
4.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G785-G796, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30978113

RESUMO

Xenin-25 is a neurotensin-like peptide that is secreted by enteroendocrine cells in the small intestine. Xenin-8 is reported to augment duodenal anion secretion by activating afferent neural pathways. The intrinsic neuronal circuits mediating the xenin-25-induced anion secretion were characterized using the Ussing-chambered, mucosa-submucosa preparation from the rat ileum. Serosal application of xenin-25 increased the short-circuit current in a concentration-dependent manner. The responses were abolished by the combination of Cl--free and HCO3- -free solutions. The responses were almost completely blocked by TTX (10-6 M) but not by atropine (10-5 M) or hexamethonium (10-4 M). The selective antagonists for neurotensin receptor 1 (NTSR1), neurokinin 1 (NK1), vasoactive intestinal polypeptide (VIP) receptors 1 and 2 (VPAC1 and VPAC2, respectively), and capsaicin, but not 5-hydroxyltryptamine receptors 3 and 4 (5-HT3 and 5-HT4), NTSR2, and A803467, inhibited the responses to xenin-25. The expression of VIP receptors (Vipr) in rat ileum was examined using RT-PCR. The Vipr1 PCR products were detected in the submucosal plexus and mucosa. Immunohistochemical staining showed the colocalization of NTSR1 and NK1 with substance P (SP)- and calbindin-immunoreactive neurons in the submucosal plexus, respectively. In addition, NK1 was colocalized with noncholinergic VIP secretomotor neurons. Based on the results from the present study, xenin-25-induced Cl-/ HCO3- secretion is involved in NTSR1 activation on intrinsic and extrinsic afferent neurons, followed by the release of SP and subsequent activation of NK1 expressed on noncholinergic VIP secretomotor neurons. Finally, the secreted VIP may activate VPAC1 on epithelial cells to induce Cl-/ HCO3- secretion in the rat ileum. Activation of noncholinergic VIP secretomotor neurons by intrinsic primary afferent neurons and extrinsic afferent neurons by postprandially released xenin-25 may account for most of the neurogenic secretory response induced by xenin-25. NEW & NOTEWORTHY This study is the first to investigate the intrinsic neuronal circuit responsible for xenin-25-induced anion secretion in the rat small intestine. We have found that nutrient-stimulated xenin-25 release may activate noncholinergic vasoactive intestinal polypeptide (VIP) secretomotor neurons to promote Cl-/ HCO3- secretion through the activation of VIP receptor 1 on epithelial cells. Moreover, the xenin-25-induced secretory responses are mainly linked with intrinsic primary afferent neurons, which are involved in the activation of neurotensin receptor 1 and neurokinin 1 receptor.


Assuntos
Ânions/metabolismo , Sistema Nervoso Entérico/metabolismo , Íleo , Vias Neurais/metabolismo , Neurotensina/metabolismo , Receptores Tipo I de Polipeptídeo Intestinal Vasoativo/metabolismo , Animais , Hormônios Gastrointestinais/metabolismo , Íleo/inervação , Íleo/fisiologia , Mucosa Intestinal/metabolismo , Ratos , Receptores de Neurotensina/metabolismo
5.
PLoS One ; 13(10): e0205994, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30339696

RESUMO

This study investigated the effect of enteral administration of obestatin on the development of small intestine, as well as oxidative stress markers and trancriptomic profile of gastrointestinal genes. Suckling rats were assigned to 3 groups treated with: C-saline solution; OL-obestatin (125 nmol/kg BW); OH-obestatin (250 nmol/kg BW) administered twice daily, from the 14th to the 21st day of life. Enteral administration of obestatin in both studied doses had no effect neither on the body weight of animals nor the BMI calculated in the day of euthanasia. Compared to the control group (C), treatment with obestatin resulted in significant changes in the histometry of the small intestinal wall as well as intestinal epithelial cell remodeling. The observed changes and their possible implications for intestinal development were dependent on the dosage of peptide. The enteral administration of high dose (OH) of obestatin significantly decreased its expression in the stomach and increased markers of oxidative stress. The gene profile revealed MAPK3 (mitogen-activated protein kinase-3) as the key regulator gene for obestatin action in the gastrointestinal track. In conclusion, we have showed that enteral administration of obestatin influences the gut mucosa remodeling. It is also suggested that the administration of high dose (OH) has inhibitory effect on the intestinal maturation of suckling rats.


Assuntos
Grelina/administração & dosagem , Grelina/farmacologia , Intestino Delgado/crescimento & desenvolvimento , Adiposidade/efeitos dos fármacos , Animais , Animais Lactentes , Peso Corporal/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Reparo do DNA/efeitos dos fármacos , Nutrição Enteral , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/sangue , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/enzimologia , Peptídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Estômago/efeitos dos fármacos
6.
Dig Dis Sci ; 62(8): 1944-1952, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28523577

RESUMO

BACKGROUND: Therapy with nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with enteropathy in humans and experimental animals, a cause of considerable morbidity. Unlike foregut NSAID-associated mucosal lesions, most treatments for this condition are of little efficacy. We propose that the endogenously released intestinotrophic hormone glucagon-like peptide-2 (GLP-2) prevents the development of NSAID-induced enteropathy. Since the short-chain fatty acid receptor FFA3 is expressed on enteroendocrine L cells and on enteric nerves in the gastrointestinal tract, we further hypothesized that activation of FFA3 on L cells protects the mucosa from injury via GLP-2 release with enhanced duodenal HCO3- secretion. We thus investigated the effects of synthetic selective FFA3 agonists with consequent GLP-2 release on NSAID-induced enteropathy. METHODS: We measured duodenal HCO3- secretion in isoflurane-anesthetized rats in a duodenal loop perfused with the selective FFA3 agonists MQC or AR420626 (AR) while measuring released GLP-2 in the portal vein (PV). Intestinal injury was produced by indomethacin (IND, 10 mg/kg, sc) with or without MQC (1-10 mg/kg, ig) or AR (0.01-0.1 mg/kg, ig or ip) treatment. RESULTS: Luminal perfusion with MQC or AR (0.1-10 µM) dose-dependently augmented duodenal HCO3- secretion accompanied by increased GLP-2 concentrations in the PV. The effect of FFA3 agonists was inhibited by co-perfusion of the selective FFA3 antagonist CF3-MQC (30 µM). AR-induced augmented HCO3- secretion was reduced by iv injection of the GLP-2 receptor antagonist GLP-2(3-33) (3 nmol/kg), or by pretreatment with the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTRinh-172 (1 mg/kg, ip). IND-induced small intestinal ulcers were dose-dependently inhibited by intragastric administration of MQC or AR. GLP-2(3-33) (1 mg/kg, ip) or CF3-MQC (1 mg/kg, ig) reversed AR-associated reduction in IND-induced enteropathy. In contrast, ip injection of AR had no effect on enteropathy. CONCLUSION: These results suggest that luminal FFA3 activation enhances mucosal defenses and prevents NSAID-induced enteropathy via the GLP-2 pathway. The selective FFA3 agonist may be a potential therapeutic candidate for NSAID-induced enteropathy.


Assuntos
Anti-Inflamatórios não Esteroides/efeitos adversos , Bicarbonatos/metabolismo , Duodeno/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Peptídeo 2 Semelhante ao Glucagon/metabolismo , Enteropatias/prevenção & controle , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Indometacina/efeitos adversos , Enteropatias/induzido quimicamente , Mucosa Intestinal/metabolismo , Masculino , Quinolonas/farmacologia , Ratos , Ratos Sprague-Dawley , Úlcera/induzido quimicamente , Úlcera/prevenção & controle
7.
Cell Signal ; 35: 188-196, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28412413

RESUMO

Intestinal epithelial cells form a tight barrier to act as selective physical barriers, repelling hostile substances. Tumor necrosis factor-α (TNF-α) is a well characterized pro-inflammatory cytokine which can compromise intestinal barrier function and the suppression of TNF-α function is important for treatment of inflammatory bowel disease (IBD). In this study, we investigated the contribution of G-protein-coupled receptor (GPCR)-induced signalling pathways to the maintenance of epithelial barrier function. We first demonstrated the existence of functional muscarinic M3 and histamine H1 receptors in colonic epithelial cell HT-29/B6. As we previously reported, muscarinic M3 receptor prevented TNF-α-induced barrier disruption through acceleration of TNF receptor (TNFR) shedding which is carried out by TNF-α converting enzyme (TACE). M3 receptor-mediated suppression of TNF-α function depends on Gαq/11 protein, however, histamine H1 receptor could not ameliorate TNF-α function, while which could induce Gαq/11 dependent intracellular Ca2+ mobilization. We found that p38 MAPK was predominantly phosphorylated by M3 receptor through Gαq/11 protein, whereas H1 receptor barely upregulated the phosphorylation. Inhibition of p38 MAPK abolished M3 receptor-mediated TNFR shedding and suppression of TNF-α-induced NF-κB signalling. The p38 MAPK was also involved in TACE- mediated EGFR transactivation followed by ERK1/2 phosphorylation. These results indicate that not H1 but M3 receptor-induced activation of p38 MAPK might contribute to the maintenance of epithelial barrier function through down-regulation of TNF-α signalling and activation of EGFR.


Assuntos
Receptores ErbB/genética , Receptor Muscarínico M3/genética , Fator de Necrose Tumoral alfa/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Células HT29 , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Fosforilação , Receptor Muscarínico M3/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
J Pharmacol Exp Ther ; 361(1): 151-161, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115552

RESUMO

Xenin-25, a neurotensin (NT)-related anorexigenic gut hormone generated mostly in the duodenal mucosa, is believed to increase the rate of duodenal ion secretion, because xenin-induced diarrhea is not present after Roux-en-Y gastric bypass surgery. Because the local effects of xenin on duodenal ion secretion have remained uninvestigated, we thus examined the neural pathways underlying xenin-induced duodenal anion secretion. Intravenous infusion of xenin-8, a bioactive C-terminal fragment of xenin-25, dose dependently increased the rate of duodenal HCO3- secretion in perfused duodenal loops of anesthetized rats. Xenin was immunolocalized to a subset of enteroendocrine cells in the rat duodenum. The mRNA of the xenin/NT receptor 1 (NTS1) was predominantly expressed in the enteric plexus, nodose and dorsal root ganglia, and in the lamina propria rather than in the epithelium. The serosal application of xenin-8 or xenin-25 rapidly and transiently increased short-circuit current in Ussing-chambered mucosa-submucosa preparations in a concentration-dependent manner in the duodenum and jejunum, but less so in the ileum and colon. The selective antagonist for NTS1, substance P (SP) receptor (NK1), or 5-hydroxytryptamine (5-HT)3, but not NTS2, inhibited the responses to xenin. Xenin-evoked Cl- secretion was reduced by tetrodotoxin (TTX) or capsaicin-pretreatment, and abolished by the inhibitor of TTX-resistant sodium channel Nav1.8 in combination with TTX, suggesting that peripheral xenin augments duodenal HCO3- and Cl- secretion through NTS1 activation on intrinsic and extrinsic afferent nerves, followed by release of SP and 5-HT. Afferent nerve activation by postprandial, peripherally released xenin may account for its secretory effects in the duodenum.


Assuntos
Duodeno/efeitos dos fármacos , Duodeno/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neurotensina/farmacologia , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Relação Dose-Resposta a Droga , Hormônios Gastrointestinais/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
9.
Physiol Rep ; 4(9)2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27162263

RESUMO

ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions.


Assuntos
Benzofuranos/farmacologia , Mucosa Intestinal/metabolismo , Intestino Grosso/metabolismo , Intestino Delgado/metabolismo , Estilbenos/farmacologia , Animais , Benzofuranos/química , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Relação Dose-Resposta a Droga , Mucosa Intestinal/efeitos dos fármacos , Intestino Grosso/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Masculino , Permeabilidade , Ratos , Ratos Sprague-Dawley , Resveratrol , Estilbenos/química
10.
Physiol Rep ; 4(7)2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27053293

RESUMO

Intestinal epithelial cells sense short-chain fatty acids (SCFAs) to secrete non-neuronal acetylcholine (ACh). However, the roles of luminalSCFAs and epithelialACh under normal and pathological conditions remain unknown. We examined ileal contractile responses toSCFAs at different ages and their mucosal cholinergic alterations under inflammatory conditions. Ileal contractile responses toSCFAs in 1-day-old pups to 7-week-old mice were compared using an isotonic transducer, and responses to an intraperitoneal injection of lipopolysaccharide (LPS) were analyzed in 7-week-old mice. ThemRNAexpression levels of aSCFAactivate free fatty acid receptor, acetylcholinesterase (AChE), choline acetyltransferase (Chat), and choline transporter-like protein 4 (CTL4) were measured using real-time quantitativeRT-PCRAChE was analyzed by histochemical and optical enzymatic assays. Atropine-sensitive ileal contractile responses toSCFAs occurred in all 1-day-old pups, but were frequently desensitized after the weaning period. These contractile responses were not inhibited by tetrodotoxin and did not appear when the mucosal layer had been scraped off. Contractile desensitization in 7-week-old mice was abolished in the presence of theAChE inhibitor, eserine, which was consistent with increasedAChE activity after weaning. Ileal contractions toSCFAs in adult mice were restored byLPS, which significantly increased the epithelialmRNAexpression of Chat andCTL4. Atropine-sensitive ileal contractile responses toSCFAs constitutively occur in the newborn period, and are desensitized during developmental stages following the up-regulated expression ofAChE in the villous mucosa, but are restored under inflammatory conditions possibly via the release of epithelialACh.


Assuntos
Atropina/farmacologia , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos/farmacologia , Íleo/efeitos dos fármacos , Inflamação/fisiopatologia , Mucosa Intestinal/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Ácido Acético/farmacologia , Acetilcolina/metabolismo , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Fatores Etários , Animais , Colina O-Acetiltransferase/genética , Colina O-Acetiltransferase/metabolismo , Inibidores da Colinesterase/farmacologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Íleo/metabolismo , Íleo/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Propionatos/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Tempo
11.
FEBS Lett ; 589(23): 3640-7, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26519558

RESUMO

Impaired intestinal barrier function is one of the critical issues in inflammatory bowel diseases. The aim of this study is to investigate muscarinic cholinoceptor (mAChR)-mediated signaling for the amelioration of cytokine-induced barrier dysfunction in intestinal epithelium. Rat colon challenged with TNF-α and interferon γ reduced transepithelial electrical resistance (TER). This barrier injury was attenuated by muscarinic stimulation. In HT-29/B6 intestinal epithelial cells, muscarinic stimulation suppressed TNF-α-induced activation of NF-κB signaling and barrier disruption. Finally, muscarinic stimulation promoted the shedding of TNFR1, which would be a mechanism for the attenuation of TNF-α/NF-κB signaling and barrier disruption via mAChR.


Assuntos
Mucosa Intestinal/citologia , Receptores Muscarínicos/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Colo/citologia , Células HT29 , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , NF-kappa B/metabolismo , Ratos , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Peptides ; 65: 1-5, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25629252

RESUMO

Apelin is considered an important gut regulatory peptide with potential physiological roles in gastrointestinal cytoprotection and regulation of food intake and drinking behavior. The aim of this study was to determine the effects of intraperitoneal or intragastric apelin administration on gastric and intestinal epithelial apoptosis, mitosis and DNA repair enzyme 8-oxoguanine (OGG 1/2) expression in young Wistar rats (50±5 g b.wt.). Apelin-13 was intraperitoneally or intragastrically administered twice a day for 10 days (100 nmol/kg b.wt./2×day), and control groups received physiological saline as a placebo. The rats were sacrificed after treatment, and the gastric fundus, duodenum, middle jejunum and colon tissue samples were harvested for immunofluorescence studies. Intragastric administration of apelin-13 increased the apoptotic index in the stomach and colon tissues (P≤0.001) but decreased apoptosis in the duodenum and jejunum (P<0.001); this approach reduced the number of mitotic cells in the jejunum and colon but increased mitoses (P<0.001) in the duodenum. Finally, intragastric apelin-13 increased (P<0.001) OGG 1/2 enzyme expression in the stomach and jejunum and decreased its expression in the colon (P<0.01). However, intraperitoneal apelin-13 injection caused the opposite effect in the same regions of the gastrointestinal tract. In conclusion, apelin inhibits gastrointestinal tissue maturation in young rats, regardless of the administration route. However, further studies are required to clarify the mechanism of apelin action on gastrointestinal tract maturation in young rats.


Assuntos
Colo/efeitos dos fármacos , Duodeno/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Jejuno/efeitos dos fármacos , Estômago/efeitos dos fármacos , Animais , Apelina , Apoptose/efeitos dos fármacos , Colo/citologia , Colo/crescimento & desenvolvimento , Colo/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Ingestão de Líquidos/efeitos dos fármacos , Ingestão de Líquidos/fisiologia , Esquema de Medicação , Duodeno/citologia , Duodeno/crescimento & desenvolvimento , Duodeno/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Mucosa Gástrica/metabolismo , Expressão Gênica/efeitos dos fármacos , Infusões Parenterais , Isoenzimas/genética , Isoenzimas/metabolismo , Jejuno/citologia , Jejuno/crescimento & desenvolvimento , Jejuno/metabolismo , Masculino , Mitose/efeitos dos fármacos , Especificidade de Órgãos , Ratos , Ratos Wistar , Estômago/citologia , Estômago/crescimento & desenvolvimento
13.
J Invest Surg ; 27(6): 332-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24960307

RESUMO

PURPOSE OF THE STUDY: Rerouting of nutrients and/or increasing nutrient delivery to the small intestine after Roux-en-Y gastric bypass may have important potential as a diabetes treatment modality. However, it is still important question which part of the gastrointestinal tract is the most important for control of glycemia. The aim of this study was to investigate the role of different segments of the gastrointestinal tract on glucose metabolism in the physiological state. MATERIALS AND METHODS: Forty 12-week-old male Wistar rats were divided into the following four groups of 10 animals each: the gastrostomy group, the duodenostomy group, the jejunostomy group, and the ileostomy group. All rats were subjected to a glucose tolerance test by infusion of glucose via the surgically inserted tubes in the stomach (gastrostomy), in the duodenum (duodenostomy), in the jejunum (jejunostomy), or in the ileum (ileostomy). Plasma glucagon-like peptide-17-36 (GLP-17-36) and insulin levels during the glucose tolerance test were assayed and Matsuda index was calculated. RESULTS: Ileostomy rats exhibited significantly lower glycemic excursions compared with gastrostomy, duodenostomy, and jejunostomy rats. Insulin and GLP-1 levels during the glucose tolerance test were significantly higher in duodenostomy and jejunostomy rats than in gastrostomy and ileostomy rats. Matsuda index was significantly higher in ileostomy rats than in duodenostomy and jejunostomy rats. CONCLUSION: Ileal glucose infusion leads to increased insulin sensitivity, further decreasing blood glucose levels.


Assuntos
Glicemia/metabolismo , Glucose/administração & dosagem , Glucose/farmacologia , Íleo , Infusões Parenterais , Resistência à Insulina/fisiologia , Animais , Duodenostomia , Gastrostomia , Peptídeo 1 Semelhante ao Glucagon/sangue , Teste de Tolerância a Glucose , Ileostomia , Insulina/sangue , Jejunostomia , Masculino , Modelos Animais , Ratos , Ratos Wistar
14.
Peptides ; 52: 38-43, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24333288

RESUMO

The portal neural system may have an important role on the regulation of glucose homeostasis since activation of the gut-brain-liver neurocircuit by nutrient sensing in the proximal intestine reduces hepatic glucose production through enhanced liver insulin sensitivity. Although there have been many studies investigating the role of portal neural system, surgical denervation of the sole portal vein has not been reported to date. The aim of this study was to clarify the role of the portal neural system on the regulation of glucose homeostasis and food intake in the physiological condition. Surgical denervation of portal vein (DV) was performed in 10 male 12 week-old Wistar rats. The control was a sham operation (SO). One week after surgery, food intake and body weight were monitored; an oral glucose tolerance test (OGTT) was performed; and glucagon-like peptide-1 (GLP-1) and insulin levels during OGTT were assayed. In addition, insulinogenic index, homeostatic model assessment, and Matsuda index were calculated. All rats regained the preoperative body weight at one week after surgery. There was no significant difference in food intake between DV and SO rats. DV rats exhibited increased blood glucose levels associated with decreased insulin sensitivity but increased GLP-1 and insulin secretion during OGTT. In summary, in the physiological state, loss of the portal neural system leads to decreased insulin sensitivity and increased blood glucose levels but does not affect food intake. These data indicate that an intact portal neural system is important for maintaining normal glucose metabolism.


Assuntos
Glicemia/metabolismo , Ingestão de Alimentos/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Resistência à Insulina , Insulina/metabolismo , Fígado/metabolismo , Veia Porta/inervação , Animais , Secreção de Insulina , Masculino , Ratos , Ratos Wistar
15.
Eur J Pharm Sci ; 49(3): 382-9, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23608612

RESUMO

The present study aimed to design a PEGylated VIP derivative, [Arg(15, 20, 21), Leu(17)]-VIP-GRR (IK312532), with improved metabolic stability, and develop its respirable powder (RP) formulation for inhalation therapy. IK312532 was chemically conjugated with PEG (5 kDa, P5K), the physicochemical and biochemical properties of which were characterized by CD spectral analysis, binding assays, and metabolic stability. CD spectral analysis demonstrated that PEG conjugation had no impact on the conformational structure of IK312532. Although the receptor-binding activity of IK312532/P5K (IC50: 82 nM) was estimated to be ca. 30-fold less than that of IK312532 (IC50: 2.8 nM), the metabolic stability of IK312532/P5K was highly improved. The IK312532/P5K was jet-milled and blended with lactose carrier particles to provide RP formulation of IK312532/P5K (IK312532/P5K-RP). In vitro inhalation performance and in vivo pharmacological effects of the IK312532/P5K-RP in antigen-sensitized rats were also evaluated. In cascade impactor analyses, fine particle fraction of IK312532/P5K-RP was calculated to be ca. 37%. Insufflation of IK312532/P5K-RP (150 µg of IK312532/P5K) in antigen-sensitized rats resulted in marked attenuation of inflammatory events, as evidenced by significant decreases in inflammatory biomarkers and granulocyte recruitment in pulmonary tissue 24h after the antigen challenge. From these findings, PEGylation of a VIP derivative, as well as its strategic application to the RP formulation, may be a viable approach to improve its therapeutic potential for the treatment of airway inflammatory diseases.


Assuntos
Anti-Inflamatórios/química , Polietilenoglicóis/química , Peptídeo Intestinal Vasoativo/análogos & derivados , Administração por Inalação , Alérgenos , Animais , Anti-Inflamatórios/administração & dosagem , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Células , L-Lactato Desidrogenase/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Ovalbumina , Tamanho da Partícula , Peroxidase/metabolismo , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Polietilenoglicóis/administração & dosagem , Ratos , Ratos Sprague-Dawley , Peptídeo Intestinal Vasoativo/administração & dosagem , Peptídeo Intestinal Vasoativo/química
16.
Med Sci Monit ; 18(5): BR181-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22534700

RESUMO

BACKGROUND: Previous studies have shown that administration of ghrelin exhibits protective and therapeutic effects in the gut. The aim of the present investigation was to examine the influence of ghrelin administration on the course of cysteamine-induced duodenal ulcers, as well as effects on mucosal production of oxygen free radicals and duodenal antioxidant defense. MATERIAL/METHODS: Duodenal ulcers were induced in male Wistar rats by cysteamine administered intragastrically at the dose of 200 mg/kg in 1 ml of saline, 3 times at 4-h intervals. Starting 24 h after the first dose of cysteamine, rats were treated intraperitoneally twice a day with saline or ghrelin given at the dose of 4, 8 or 16 nmol/kg/dose. Seven days after administration of the first dose of cysteamine, the study was terminated. RESULTS: Induction of ulcers by cysteamine was accompanied by a reduction in duodenal blood flow, mucosal DNA synthesis and mucosal activity of superoxide dismutase (SOD); whereas mucosal concentration of interleukin-1ß and malonyldialdehyde (MDA - an index of lipid peroxidation) were increased. Treatment with ghrelin increased healing rate of duodenal ulcers and enhanced duodenal blood flow, mucosal DNA synthesis and mucosal activity of SOD, and reduced mucosal concentration of interleukin-1ß and MDA. CONCLUSIONS: Treatment with ghrelin increases the healing rate of duodenal ulcers and this effect is related, at least in part, to improvement of duodenal mucosal blood flow, mucosal cell proliferation and antioxidant defense, as well as being related to reduction in mucosal oxidative stress and inflammatory response.


Assuntos
Cisteamina/efeitos adversos , Úlcera Duodenal/tratamento farmacológico , Grelina/administração & dosagem , Cicatrização/efeitos dos fármacos , Animais , Grelina/farmacologia , Grelina/uso terapêutico , Masculino , Ratos , Ratos Wistar
17.
Peptides ; 35(2): 182-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22484228

RESUMO

The present study was undertaken to develop a respirable sustained-release powder (RP) formulation of long-acting VIP derivative, [Arg(15, 20, 21), Leu(17)]-VIP-GRR (IK312532), using PLGA nanospheres (NS) with the aim of improving the duration of action. NS formulation of IK312532 (IK312532/NS) was prepared by an emulsion solvent diffusion method in oil, and a mixture of the IK312532/NS and erythritol was jet-milled and mixed with lactose carrier to obtain the IK312532/NS-RP. Physicochemical properties were characterized focusing on appearance, particle size, and drug release, and in vivo pharmacological effects were assessed in antigen-sensitized rats. The IK312532/NS with a diameter of 140 nm showed a biphasic release pattern in distilled water with ca. 20% initial burst for 30 min and a sustained slow release up to ca. 55% for 24h. Laser diffraction analysis demonstrated that IK312532/NS-RP had fine dispersibility and suitable particle size for inhalation. In antigen-sensitized rats, insufflated IK312532/NS-RP (10 µg of IK312532/rat) could suppress increases of granulocyte recruitment and myeloperoxidase in pulmonary tissue for up to 24h after antigen challenge, although IK312532-RP at the same dose was less effective with limited duration of action. From these findings, newly prepared IK312532/NS-RP might be of clinical importance in improving duration of action and medication compliance for treatment of airway inflammatory diseases.


Assuntos
Asma/tratamento farmacológico , Pneumonia/tratamento farmacológico , Peptídeo Intestinal Vasoativo/análogos & derivados , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Preparações de Ação Retardada , Modelos Animais de Doenças , Granulócitos/efeitos dos fármacos , Granulócitos/fisiologia , Pulmão/efeitos dos fármacos , Pneumopatias/tratamento farmacológico , Masculino , Nanosferas , Peroxidase/metabolismo , Ratos , Ratos Sprague-Dawley , Sistema Respiratório/efeitos dos fármacos , Sistema Respiratório/imunologia , Peptídeo Intestinal Vasoativo/administração & dosagem , Peptídeo Intestinal Vasoativo/farmacologia , Peptídeo Intestinal Vasoativo/uso terapêutico
18.
Am J Physiol Gastrointest Liver Physiol ; 300(6): G1132-43, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21372164

RESUMO

Gut lumen is continually exposed to a great variety of agents, including noxious compounds. Chemical receptors that detect the luminal environment are thought to play an important role as sensors and to modulate gastrointestinal functions. Recently, it has been reported that odorant receptors (ORs) are expressed in the small intestinal mucosa and that odorants stimulate serotonin secretion. However, ion transport in the responses to odorants has rarely been discussed, particularly in relation to the large intestine. In the present study, we examined the effects of the OR ligand thymol on ion transport in human and rat colonic epithelia using an Ussing chamber. In the mucosal-submucosal preparations, the mucosal addition of thymol evoked anion secretion concentration dependently. In addition, dextran (4 kDa) permeability was enhanced by the mucosal treatment with thymol. The response to thymol was not affected by tetrodotoxin (TTX) or piroxicam treatments in human or rat colon. Thymol-evoked electrogenic anion secretion was abolished under Ca(2+)-free conditions or mucosal treatment with transient receptor potential (TRP) A1 blocker (HC-030031). Pretreatment of thymol did not affect electrical field stimulation-evoked anion secretion but significantly attenuated short-chain fatty acid-evoked secretion in a concentration-dependent manner. OR1G1 and TRPA1 expression was investigated in isolated colonic mucosa by RT-PCR. The present results provide evidence that the OR ligand thymol modulates epithelial permeability and electrogenic anion secretion in human and rat colon. The anion secretion by luminal thymol is most likely mediated by direct activation of TRPA1 channel. We suggest that the sensing and responding to odorants in the colon also plays a role in maintaining intestinal homeostasis.


Assuntos
Colo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Receptores Odorantes/efeitos dos fármacos , Timol/farmacologia , Idoso , Análise de Variância , Animais , Anquirinas/genética , Anquirinas/metabolismo , Bicarbonatos/metabolismo , Transporte Biológico , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Cloretos/metabolismo , Colo/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Dextranos/metabolismo , Relação Dose-Resposta a Droga , Estimulação Elétrica , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Técnicas In Vitro , Mucosa Intestinal/metabolismo , Masculino , Potenciais da Membrana , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Permeabilidade , Inibidores de Fosfodiesterase/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Antagonistas da Serotonina/farmacologia , Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC , Fatores de Tempo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo
19.
Eur J Pharm Sci ; 41(3-4): 508-14, 2010 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20797433

RESUMO

Cigarette smoke (CS) has been identified as a predominant causative factor for chronic obstructive pulmonary disease (COPD), so CS-exposed rodent model of COPD has drawn considerable interest and attention for fundamental study and drug discovery. In the present study, using experimental COPD model rats, the therapeutic potential of a newly prepared respirable powder (RP) formulation of a long-acting VIP derivative, [Arg(15,20,21), Leu(17)]-VIP-GRR (IK312532), was assessed with a focus on pro-inflammatory biomarkers, morphological and histochemical changes, and infiltrated cells in the respiratory system. CS exposure of rats for 11 days led to the marked infiltration of inflammatory cells, except for eosinophils, in bronchiolar epithelium, followed by goblet cell metaplasia and hyperplasia. However, inhalation of IK312532-RP (50µg/rat) in the CS-exposed rats resulted in 74 and 71% reductions of granulocyte recruitment in bronchoalveolar lavage fluids and lung tissues, respectively, with 68% decrease of goblet cells. Biomarker study demonstrated that the inhaled IK312532-RP could suppress the CS-evoked increase of myeloperoxidase in both plasma and lung by 87 and 70%, respectively, possibly leading to potent suppression of neutrophilic inflammatory symptoms. The results from TUNEL staining were indicative of apoptotic damage in respiratory tissues of the CS-exposed rats, and there appeared to be marked decrease of TUNEL-positive cells in the CS-exposed rat with inhaled IK312532-RP. The present findings suggest that an inhalable formulation of IK312532 might be efficacious as a therapy for COPD or other airway inflammatory diseases because of its potent immunomodulating activities.


Assuntos
Inflamação/tratamento farmacológico , Neutrófilos/fisiologia , Nicotiana , Fumaça/efeitos adversos , Peptídeo Intestinal Vasoativo/análogos & derivados , Administração por Inalação , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Biomarcadores , Peroxidase de Eosinófilo/metabolismo , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Pneumopatias/tratamento farmacológico , Pneumopatias/patologia , Masculino , Neutrófilos/efeitos dos fármacos , Peroxidase/metabolismo , Pós , Ratos , Ratos Sprague-Dawley , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/patologia , Peptídeo Intestinal Vasoativo/administração & dosagem , Peptídeo Intestinal Vasoativo/química , Peptídeo Intestinal Vasoativo/uso terapêutico
20.
Peptides ; 31(1): 72-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19808073

RESUMO

Vasoactive intestinal peptide (VIP) exerts immunomodulating and anti-inflammatory activities through its specific receptors, such as VPAC1 and 2 receptors. Previously, a stabilized VIP derivative, [R(15,20,21), L(17)]-VIP-GRR (IK312532), was proposed as a candidate of anti-asthma drug, and a dry powder inhaler system of IK312532 was also developed for inhalation therapy with minimal systemic side-effects. In the present study, the anti-inflammatory properties of IK312532 respirable powder (RP) were characterized in an asthma/COPD-like animal model, with the use of newly developed ovalbumin (OVA)-RP for lung inflammation. Marked inflammatory events in the lung were observed after OVA-RP challenge in rats as evidenced by significant increase of inflammatory biomarkers such as eosinophil peroxidase (EPO), myeloperoxidase (MPO) and lactate dehydrogenase (LDH). However, intratracheal administration of IK312532-RP led to significant attenuation of plasma EPO, MPO and LDH activities, as well as significant reduction of recruited inflammatory cells in BALF, especially macrophages and eosinophils. In the rats pretreated with IK312532-RP, histochemical examinations revealed that the inflammatory cells infiltrating to the lung and the epithelial wall thickness decreased significantly by 85% and 58%, respectively. Thus, inhalable powder formulation of IK312532 exerts its anti-inflammatory activity by suppressing granulocyte recruitment to the lung and epithelial hyperplasia, followed by the reduction of cytotoxic peroxidases.


Assuntos
Anti-Inflamatórios , Asma/tratamento farmacológico , Pós/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Peptídeo Intestinal Vasoativo/análogos & derivados , Administração por Inalação , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/uso terapêutico , Asma/imunologia , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Modelos Animais de Doenças , L-Lactato Desidrogenase/metabolismo , Masculino , Peroxidase/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Ratos , Ratos Sprague-Dawley , Peptídeo Intestinal Vasoativo/administração & dosagem , Peptídeo Intestinal Vasoativo/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA