Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(8): 1457-67, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792177

RESUMO

Idiopathic interstitial pneumonias (IIPs) comprise a heterogeneous group of rare lung parenchyma disorders with high morbidity and mortality, which can occur at all ages. In adults, the most common form of IIPs, idiopathic pulmonary fibrosis (IPF), has been associated with an increased frequency of lung cancer. The molecular basis of IIPs remains unknown in most cases. This study investigates IIP pathophysiology in 12 families affected by IPF and lung cancer. We identified, in a multigenerational family, nine members carrying a heterozygous missense mutation with evidence of pathogenicity in SFTPA1 that encodes the surfactant protein (SP)-A1. The mutation (p.Trp211Arg), which segregates with a disease phenotype characterized by either isolated IIP/IPF, or IPF associated with lung adenocarcinoma, is located in the carbohydrate recognition domain (CRD) of SP-A1 and involves a residue invariant throughout evolution, not only in SP-A1, but also in its close paralog SP-A2 and other CRD-containing proteins. As shown through functional studies, the p.Trp211Arg mutation impairs SP-A1 secretion. Immunohistochemistry studies on patient alveolar epithelium showed an altered SP-A expression pattern. Overall, this first report of a germline molecular defect in SFTPA1 unveils the key role of SP-A1 in the occurrence of several chronic respiratory diseases, ranging from severe respiratory insufficiency occurring early in life to the association of lung fibrosis and cancer in adult patients. These data also clearly show that, in spite of their structural and functional similarities, SP-A1 and SP-A2 are not redundant.


Assuntos
Mutação em Linhagem Germinativa , Pneumonias Intersticiais Idiopáticas/genética , Neoplasias Pulmonares/genética , Mutação de Sentido Incorreto , Proteína A Associada a Surfactante Pulmonar/genética , Adulto , Idoso , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Pneumonias Intersticiais Idiopáticas/patologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Proteína A Associada a Surfactante Pulmonar/metabolismo , Análise de Sequência de DNA
2.
PLoS Genet ; 8(7): e1002823, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844247

RESUMO

Gene silencing mediated by either microRNAs (miRNAs) or Adenylate/uridylate-rich elements Mediated mRNA Degradation (AMD) is a powerful way to post-transcriptionally modulate gene expression. We and others have reported that the RNA-binding protein KSRP favors the biogenesis of select miRNAs (including let-7 family) and activates AMD promoting the decay of inherently labile mRNAs. Different layers of interplay between miRNA- and AMD-mediated gene silencing have been proposed in cultured cells, but the relationship between the two pathways in living organisms is still elusive. We conditionally deleted Dicer in mouse pituitary from embryonic day (E) 9.5 through Cre-mediated recombination. In situ hybridization, immunohistochemistry, and quantitative reverse transcriptase-PCR revealed that Dicer is essential for pituitary morphogenesis and correct expression of hormones. Strikingly, αGSU (alpha glycoprotein subunit, common to three pituitary hormones) was absent in Dicer-deleted pituitaries. αGSU mRNA is unstable and its half-life increases during pituitary development. A transcriptome-wide analysis of microdissected E12.5 pituitaries revealed a significant increment of KSRP expression in conditional Dicer-deleted mice. We found that KSRP directly binds to αGSU mRNA, promoting its rapid decay; and, during pituitary development, αGSU expression displays an inverse temporal relationship to KSRP. Further, let-7b/c downregulated KSRP expression, promoting the degradation of its mRNA by directly binding to the 3'UTR. Therefore, we propose a model in which let-7b/c and KSRP operate within a negative feedback loop. Starting from E12.5, KSRP induces the maturation of let-7b/c that, in turn, post-transcriptionally downregulates the expression of KSRP itself. This event leads to stabilization of αGSU mRNA, which ultimately enhances the steady-state expression levels. We have identified a post-transcriptional regulatory network active during mouse pituitary development in which the expression of the hormone αGSU is increased by let7b/c through downregulation of KSRP. Our study unveils a functional crosstalk between miRNA- and AMD-dependent gene regulation during mammalian organogenesis events.


Assuntos
MicroRNAs/genética , Organogênese/genética , Hipófise , RNA Mensageiro , Proteínas de Ligação a RNA/genética , Transativadores/genética , Animais , RNA Helicases DEAD-box/genética , Desenvolvimento Embrionário/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Subunidade alfa de Hormônios Glicoproteicos/genética , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Células HEK293 , Células HeLa , Humanos , Camundongos , MicroRNAs/metabolismo , Células NIH 3T3 , Hipófise/embriologia , Hipófise/crescimento & desenvolvimento , Hipófise/metabolismo , Hormônios Hipofisários/genética , Hormônios Hipofisários/metabolismo , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA