RESUMO
Resident macrophages of various mammalian organs are characterized by several distinctive features in their gene expression profile and phenotype, including involvement in the regulation of organ functions, as well as reduced sensitivity to proinflammatory activation factors. The reasons for the formation of such a specific phenotype remain the subject of intensive research. Some papers emphasize the role of the origin of organ macrophages. Other studies indicate that monocytes that develop in the red bone marrow are also able to form resident macrophages with a phenotype characteristic of a particular organ, but this requires appropriate microenvironmental conditions. In this article, we studied the possibility of differentiation of monocyte-derived macrophages into cells with a Kupffer-like phenotype under the influence of the main stromal components of Kupffer cells macrophage niche: Ito cells, liver sinusoid endotheliocytes and hepatocyte growth factor (HGF). It was found that Kupffer cells are characterized by several features, including increased expression of transcription factors Spic and Id3, as well as MUP family genes, Clusterin and Ngp genes. In addition, Kupffer cells were characterized by a higher proliferative activity. The expression of marker genes of Kupffer cells (i.e. Id3, Spic, Marco and Timd4) increased in monocyte-derived macrophages during coculture with Ito cells, liver sinusoid endothelial cells, macrophage colony-stimulating factor and HGF cells only by 3 days. However, the expression level of these genes was always higher in Kupffer cells. In addition, a complete coincidence of the expressed gene profile in monocyte-derived macrophages and Kupffer cells did not occur even after 3 days of culturing.
Assuntos
Diferenciação Celular , Microambiente Celular , Células de Kupffer , Macrófagos , Fenótipo , Células de Kupffer/metabolismo , Células de Kupffer/citologia , Macrófagos/metabolismo , Animais , Monócitos/metabolismo , Monócitos/citologia , Fator de Crescimento de Hepatócito/metabolismo , Células Endoteliais/metabolismo , Técnicas de Cocultura , Humanos , Proliferação de Células , Células Cultivadas , Fígado/citologia , Fígado/metabolismo , CamundongosRESUMO
Uterine leiomyomas are the most common benign tumors in women of childbearing age. They may lead to problems of conception or complications during the gestational period. The methods of treatment include surgical (myomectomy and hysterectomy, embolization of arteries) and therapeutic treatment (ulipristal acetate, leuprolide acetate, cetrorelix, goserelin, mifepristone). Both approaches are efficient but incompatible with pregnancy planning. Therefore, there is a call for medical practice to develop therapeutical means of preventing leiomyoma onset in patients planning on becoming pregnant. Based on the analysis of GWAS data on the search for mononucleotide polymorphisms associated with the risk of leiomyoma, in meta-transcriptomic and meta-methylomic studies, target proteins have been proposed. Prospective therapeutic treatments of leiomyoma may be based on chemical compounds, humanized recombinant antibodies, vaccines based on markers of the uterine leiomyoma cells that are absent in the adult organism, or DNA and RNA preparations. Three different nosological forms of the disease associated with driver mutations in the MED12, HMGA2, and FH genes should be considered when developing or prescribing drugs. For example, synthetic inhibitors and vaccines based on matrix metalloproteinases MMP11 and MMP16 are expected to be effective only for the prevention of the occurrence of MED12-dependent nodules.
RESUMO
There is accumulating evidence that mitochondria and mitochondrial STAT3 are involved in the activation of mast cells. The mitochondria-targeted curcuminoids Mitocur-1 and Mitocur-3 have been suggested to reduce antigen-dependent mast cell activation by inhibiting mitochondrial STAT3. The aim of the current work was to investigate the mechanisms of action of these mitocurcuminoids on mast cells and mitochondrial functions. The pretreatment of rat basophilic leukemia cells RBL-2H3 with Mitocur-1 and Mitocur-3 decreased antigen-dependent degranulation but did not affect spontaneous degranulation. Both compounds caused mitochondrial fragmentation and increased mitochondrial ROS. Inhibition of Drp1 prevented mitochondrial fragmentation induced by Mitocur-3 but not by Mitocur-1. The antioxidant N-acetylcysteine inhibited mitochondrial fission induced by Mitocur-1 but not Mitocur-3. Mitochondrial fragmentation caused by Mitocur-3 but not Mitocur-1 was accompanied by activation of Drp1 and AMPK. These data suggest a distinct mechanism of action of mitocurcuminoids on the mitochondria of RBL-2H3 cells: Mitocur-3 stimulated AMPK and caused Drp1-dependent mitochondrial fragmentation, while Mitocur-1-induced mitochondrial fission was ROS-dependent. This difference may contribute to the higher toxicity of Mitocur-3 compared to Mitocur-1. The findings contribute to further drug development for inflammatory and allergic diseases.
Assuntos
Degranulação Celular , Mastócitos , Ratos , Animais , Mastócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Antígenos/metabolismo , MitocôndriasRESUMO
The serious problems of conventional breast cancer therapy strategies such as drug resistance, severe side effects, and lack of selectivity prompted the development of various cold atmospheric plasma (CAP) devices. Due to its advanced technology, CAP can produce a unique environment rich in reactive oxygen and nitrogen species (RONS), photons, charged ions, and an electric field, making it a promising revolutionary platform for cancer therapy. Despite substantial technological successes, CAP-based therapeutic systems are encounter with distinct limitations, including low control of the generated RONS, poor knowledge about its anticancer mechanisms, and challenges concerning designing, manufacturing, clinical translation, and commercialization, which must be resolved. The latest developments in CAP-based therapeutic systems for breast cancer treatment are discussed in this review. More significantly, the integration of CAP-based medicine approaches with other breast cancer therapies, including chemo- and nanotherapy is thoroughly addressed.
Assuntos
Neoplasias da Mama , Gases em Plasma , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Gases em Plasma/uso terapêutico , Espécies Reativas de Oxigênio , Espécies Reativas de Nitrogênio , OxigênioRESUMO
Dendritic cells (DCs) loaded with tumor-associated antigens (TAAs) are known to be crucial for the antitumor response and are still included in various treatment regimens in cancer immunotherapy research. In the present study, a cell-based protocol was evaluated, involving the use of original DNA constructs encoding the wide range of TAA epitopes expressed on different epithelial cancers. The constructs were transfected into in vitro-generated DCs of patients with various types of cancer, including breast, colorectal and non-small cell lung cancer. The direct cytotoxicity assay of effector cells, activated with the transfected DCs, revealed a significant increase in cytotoxicity against autologous tumor cells. The use of DNA constructs encoding a large number of TAAs for insertion into DCs in vitro, aiming to activate a T-cell response may prove to be a reliable and unified approach for immunotherapy and for the prevention of relapse in patients with epithelial cancers.
RESUMO
In order to determine genetic loci associated with decreasing risk of uterine leiomyomata (UL), a genome-wide association study (GWAS) was performed. We analyzed a group of patients with a family history of UL and a control group consisting of patients without uterine fibroids and a family predisposition to this pathology. Six significant single nucleotide polymorphisms were selected for PCR-genotyping of a large data set of patients with UL. All investigated loci (rs3020434, rs11742635, rs124577644, rs12637801, rs2861221, and rs17677069) demonstrated the lower frequency of minor alleles within a group of women with UL, especially in a subgroup consisting of patients with UL and a familial history of leiomyomata. We also found that the minor allele frequencies of these SNPs in our control group were higher than those across the Caucasian population in all. Based on the obtained data, an evaluation of the common risk of UL was performed. Further work will pave the way to create a specific SNP-panel and allow us to estimate a genotype-based leiomyoma incidence risk. Subsequent studies of genetic variability in a group of patients with a familial predisposition to UL will allow us to make the prediction of the development and course of the disease more individualized, as well as to give our patients personalized recommendations about individual reproductive strategies.
RESUMO
BACKGROUND: Early recurrences of atrial arrhythmias (ERAA) after atrial fibrillation (AF) catheter ablation do not predict procedural failure. A well-demarcated homogeneous lesion delivered by cryoballoon is less arrhythmogenic, and the recommended three-months blanking period may not refer to cryoballoon ablation (CBA). OBJECTIVE: We aimed to evaluate the predictive role of ERAA after second-generation CBA using an implantable loop recorder. METHODS: This prospective observational study enrolled 100 patients (58 males, median age 58) with paroxysmal/persistent AF undergoing pulmonary vein (PV) CBA using second-generation cryoballoon with simultaneous ECG loop recorder implantation. The duration of follow-up was 12 months, with scheduled visits at 3, 6 and 12 months. RESULTS: 99 patients from 100 completed the 12-month follow-up period. ERAA occurred in 31.3 % of patients. 83.9 % of patients with ERAA also developed late recurrences. The 12-month freedom from AF in patients with ERAA was significantly lower than in those without ERAA (p < 0.0001). Non-paroxysmal AF and longer arrhythmia history were associated with increased risk of both early (HR 3.27; 95 % CI 1.32-8.08; p = 0.010 and HR 1.0147; 95 % CI 1.008-1.086; p = 0.015, respectively) and late recurrences (HR 3.89; 95 % CI 1.67-9.04; p = 0.002 and HR 1.0142; 95 % CI 1.007-1.078; p = 0.019, respectively) of AF. ERAA were another predictor for procedural failure (HR 15.2; 95 % CI (6.42-35.99; p = 0.019). CONCLUSIONS: ERAA occurred in the third of the patients after PV second-generation CBA and are strongly associated with procedural failure. Longer duration of AF history and persistent AF are independent predictors of AF's early and late recurrence.
Assuntos
Fibrilação Atrial/cirurgia , Criocirurgia/efeitos adversos , Eletrocardiografia Ambulatorial , Veias Pulmonares/cirurgia , Tecnologia de Sensoriamento Remoto , Potenciais de Ação , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Eletrocardiografia Ambulatorial/instrumentação , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Veias Pulmonares/fisiopatologia , Recidiva , Tecnologia de Sensoriamento Remoto/instrumentação , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do TratamentoRESUMO
BACKGROUND: Nonspecific immunosuppressive therapy for graft rejection and graft-versus-host disease (GVHD) is often accompanied by severe side effects such as opportunistic infections and cancers. Several approaches have been developed to suppress transplantation reactions using tolerogenic cells, including induction of FoxP3+ Tregs with antigen-loaded dendritic cells (DCs) and induction of CD4+IL-10+ cells with interleukin IL-10-producing DCs. Here, we assessed the effectiveness of both approaches in the suppression of graft rejection and GVHD. METHODS: IL-10-producing DCs were generated by the transfection of DCs with DNA constructs encoding mouse IL-10. Antigen-loaded DCs from C57BL/6 mice were generated by transfection with DNA constructs encoding antigenic determinants from the H2 locus of CBA mice which differ from the homologous antigenic determinants of C57BL/6 mice. RESULTS: We found that both IL-10-producing DCs and antigen-loaded immature DCs could suppress graft rejection and GVHD but through distinct nonspecific and antigen-specific mechanisms, respectively. Discussion. We provide data that the novel approach for DCs antigen loading using DNA constructs encoding distinct homologous determinants derived from major histocompatibility complex genes is effective in antigen-specific suppression of transplantation reactions. Such an approach eliminates the necessity of donor material use and may be useful in immunosuppressive therapy side effects prevention.
Assuntos
Células Dendríticas/imunologia , Epitopos/imunologia , Antígenos H-2/imunologia , Tolerância Imunológica , Animais , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Epitopos/genética , Feminino , Ordem dos Genes , Rejeição de Enxerto/imunologia , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/terapia , Antígenos H-2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Plasmídeos/genética , Subpopulações de Linfócitos T , Transfecção , Transplante HomólogoRESUMO
Breast cancer is the most common oncological pathology in women worldwide. Techniques for improving the clinical parameters of patients undergoing combination therapy for breast cancer are currently under development. A type of treatment employing dendritic cells (DCs) and cytotoxic DCinduced antigenspecific T lymphocytes efficiently eliminates residual cancer cells that are the key cause of tumor recurrence and metastasis. In the present study, DCs and activated lymphocytes (treated with IL12 and IL18) were isolated from the peripheral blood of patients with breast cancer, using a lysate of tumor tissue as antigen. The patients received the cells as part of adjuvant or neoadjuvant regimens (stage IV disease or progression). Evaluation of immunity was performed at 3 and 6 months after terminating immunotherapy. Evaluation of the diseasefree period was performed for 3 years after surgery. The use of antigenloaded autologous DCs combined with mononuclear cells with increased cytotoxic activity following Th1 polarization reduced the populations of immunosuppressive cells. The results of the present study demonstrated that the investigated cellular immunotherapy for breast cancer is safe, reduces the risk of relapse and metastasis, and improves immunity by reducing the number of regulatory T cells. Therefore, this therapeutic strategy may represent a novel approach to combating distant metastases of breast cancer.
Assuntos
Neoplasias da Mama/terapia , Células Dendríticas/transplante , Interleucina-12/imunologia , Interleucina-18/imunologia , Linfócitos T Citotóxicos/transplante , Adulto , Idoso , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Terapia Combinada , Células Dendríticas/imunologia , Feminino , Humanos , Ativação Linfocitária , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudos Prospectivos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Transplante Autólogo , Resultado do TratamentoRESUMO
Minimal residual disease remaining after resection of primary tumors can lead to tumor recurrence and metastasis, increasing mortality and morbidity rates among cancer patients. Thus, there is a need for new technologies for recognition and elimination of single cancer cells remaining in a patient's body after radiation therapy, chemotherapy, or surgical resection. Effector CD8+ T cells, also commonly known as cytotoxic T lymphocytes (CTLs), play a key role in antitumor cellular immunity and, when properly activated, are able to effectively destroy tumor cells. The aims of this study were to obtain CD8+ CTLs specific for the HER2/neu epitopes E75 and E88 and to assess the cytotoxic activity and composition of these cells in terms of the distribution of memory T-cell subsets. We obtained HER2-specific CD8+ T cells and assessed T cell subset distribution among them including naive T cells (TN), central memory T cells (TCM), effector memory T cells (TEM), stem cell-like memory T cells (TSCM) and terminally-differentiated T cells (TEMRA) via eight-color flow cytometry. HER2-specific CTLs were largely (~40-50%) represented by TSCM cells, a population capable of mounting pronounced antitumor immune responses due to a combination of effector function and self-maintenance. In comparison with activated peripheral blood mononuclear cells (PBMCs) and bulk CD8+ T cells, HER2-specific CTLs exhibited greater cytotoxicity against the HER2-expressing human breast adenocarcinoma cell line MCF-7 and produced higher levels of IFN-γ in response to tumor cells. We also showed the presence of HER2-specific CTLs in healthy individuals and increase in them in HER2-positive breast cancer patients. Collectively, our results suggest that HER2-specific CD8+ T cells isolated using this approach could be used for adoptive T-cell transfer to eliminate tumor cells and prevent metastasis and relapse in patients with HER2-overexpressing cancers.
Assuntos
Neoplasias da Mama/terapia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto , Idoso , Neoplasias da Mama/imunologia , Células Cultivadas , Citotoxicidade Imunológica , Epitopos/imunologia , Feminino , Antígeno HLA-A2/metabolismo , Humanos , Memória Imunológica , Masculino , Pessoa de Meia-Idade , Receptor ErbB-2/imunologiaRESUMO
The Community Coordinated Modeling Center has been leading community-wide space science and space weather model validation projects for many years. These efforts have been broadened and extended via the newly launched International Forum for Space Weather Modeling Capabilities Assessment (https://ccmc.gsfc.nasa.gov/assessment/). Its objective is to track space weather models' progress and performance over time, a capability that is critically needed in space weather operations and different user communities in general. The Space Radiation and Plasma Effects Working Team of the aforementioned International Forum works on one of the many focused evaluation topics and deals with five different subtopics (https://ccmc.gsfc.nasa.gov/assessment/topics/radiation-all.php) and varieties of particle populations: Surface Charging from tens of eV to 50-keV electrons and internal charging due to energetic electrons from hundreds keV to several MeVs. Single-event effects from solar energetic particles and galactic cosmic rays (several MeV to TeV), total dose due to accumulation of doses from electrons (>100 keV) and protons (>1 MeV) in a broad energy range, and radiation effects from solar energetic particles and galactic cosmic rays at aviation altitudes. A unique aspect of the Space Radiation and Plasma Effects focus area is that it bridges the space environments, engineering, and user communities. The intent of the paper is to provide an overview of the current status and to suggest a guide for how to best validate space environment models for operational/engineering use, which includes selection of essential space environment and effect quantities and appropriate metrics.
RESUMO
BACKGROUND: Recent fundamental and clinical studies have confirmed the effectiveness of utilizing the potential of the immune system to remove tumor cells disseminated in a patient's body. Cytotoxic T lymphocytes (CTLs) are considered the main effectors in cell-mediated antitumor immunity. Approaches based on antigen presentation to CTLs by dendritic cells (DCs) are currently being intensively studied, because DCs are more efficient in tumor antigen presentation to T cells through their initiation of strong specific antitumor immune responses than other types of antigen-presenting cells. Today, it has become possible to isolate CTLs specific for certain antigenic determinants from heterogeneous populations of mononuclear cells. This enables direct and specific cell-mediated immune responses against cells carrying certain antigens. The aim of the present study was to develop an optimized protocol for generating CTL populations specific for epitopes of tumor-associated antigen HER2/neu, and to assess their cytotoxic effects against the HER2/neu-expressing MCF-7 tumor cell line. METHODS: The developed protocol included sequential stages of obtaining mature DCs from PBMCs from HLA A*02-positive healthy donors, magnet-assisted transfection of mature DCs with the pMax plasmid encoding immunogenic peptides HER2 p369-377 (E75 peptide) and HER2 p689-697 (E88 peptide), coculture of antigen-activated DCs with autologous lymphocytes, magnetic-activated sorting of CTLs specific to HER2 epitopes, and stimulation of isolated CTLs with cytokines (IL-2, IL-7, and IL-15). RESULTS: The resulting CTL populations were characterized by high contents of CD8+ cells (71.5% in cultures of E88-specific T cells and 90.2% in cultures of E75-specific T cells) and displayed strong cytotoxic effects against the MCF-7 cell line (percentages of damaged tumor cells in samples under investigation were 60.2 and 65.7% for E88- and E75-specific T cells, respectively; level of spontaneous death of target cells was 17.9%). CONCLUSIONS: The developed protocol improves the efficiency of obtaining HER2/neu-specific CTLs and can be further used to obtain cell-based vaccines for eradicating targeted tumor cells to prevent tumor recurrence after the major tumor burden has been eliminated and preventing metastasis in patients with HER2-overexpressing tumors.
Assuntos
Adenocarcinoma/imunologia , Neoplasias da Mama/imunologia , Vacinas Anticâncer/imunologia , Células Dendríticas/imunologia , Imunoterapia Adotiva/métodos , Receptor ErbB-2/metabolismo , Linfócitos T Citotóxicos/imunologia , Adenocarcinoma/terapia , Neoplasias da Mama/terapia , Epitopos/genética , Feminino , Antígeno HLA-A2/metabolismo , Humanos , Ativação Linfocitária , Células MCF-7 , Metástase Neoplásica , Fragmentos de Peptídeos/genética , Receptor ErbB-2/genética , Linfócitos T Citotóxicos/transplanteRESUMO
BACKGROUND: Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells. METHODS: HeLa Kyoto cell lines stably expressing miniSOG in different localizations, namely, plasma membrane, mitochondria or chromatin (fused with histone H2B) were created. Phototoxicity of miniSOG was tested on the cells in vitro and tumor xenografts in vivo. RESULTS: Blue light induced pronounced cell death in all three cell lines in a dose-dependent manner. Caspase 3 activation was characteristic of illuminated cells with mitochondria- and chromatin-localized miniSOG, but not with miniSOG in the plasma membrane. In addition, H2B-miniSOG-expressing cells demonstrated light-induced activation of DNA repair machinery, which indicates massive damage of genomic DNA. In contrast to these in vitro data, no detectable phototoxicity was observed on tumor xenografts with HeLa Kyoto cell lines expressing mitochondria- or chromatin-localized miniSOG. CONCLUSIONS: miniSOG is an excellent genetically encoded photosensitizer for mammalian cells in vitro, but it is inferior to KillerRed in the HeLa tumor. GENERAL SIGNIFICANCE: This is the first study to assess phototoxicity of miniSOG in cancer cells. The results suggest an effective ontogenetic tool and may be of interest for molecular and cell biology and biomedical applications.
Assuntos
Flavoproteínas/genética , Terapia Genética/métodos , Oxigênio/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Animais , Caspase 3/genética , Caspase 3/metabolismo , Morte Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Dermatite Fototóxica/etiologia , Dermatite Fototóxica/genética , Dermatite Fototóxica/metabolismo , Feminino , Flavoproteínas/metabolismo , Células HEK293 , Células HeLa , Humanos , Luz/efeitos adversos , Camundongos , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/metabolismo , Riboflavina/genética , Riboflavina/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
INTRODUCTION: Cancer is a challenging disease to diagnose and treat, and oftentimes even with the best medical intervention, it spreads and is deemed incurable, requiring a shift from cure to end-of-life care. This study used a spirituality measure and the PATS© storytelling intervention developed by the principal investigator to better understand the experience of being diagnosed with cancer and being told no further curative treatments are warranted. PURPOSE: The purpose of this exploratory study was to implement a storytelling approach to explore the experience of living with terminal cancer. Second, the study documented the presence of spirituality and healing in the narratives. METHOD: The qualitative data were analyzed by narrative analysis developed by Riessman. FINDINGS: Seven synoptic stories were written and later sorted into healing categories. The narrative analysis yielded three themes. There were instances of religion and spirituality found in the transcribed stories. The participants' scores on the Spiritual Health Inventory indicated the presence of spirituality. CONCLUSION: Storytelling allowed the seven study participants to share personal experiences and achieve a sense of connectedness and intimacy. The use of the PATS© intervention is a way to facilitate physical, emotional, and spiritual healing and provide holistic end-of-life care.