Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Med Imaging ; PP2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083386

RESUMO

In computational pathology, graphs have shown to be promising for pathology image analysis. There exist various graph structures that can discover differing features of pathology images. However, the combination and interaction between differing graph structures have not been fully studied and utilized for pathology image analysis. In this study, we propose a parallel, bi-graph neural network, designated as SCUBa-Net, equipped with both graph convolutional networks and Transformers, that processes a pathology image as two distinct graphs, including a spatially-constrained graph and a spatially-unconstrained graph. For efficient and effective graph learning, we introduce two inter-graph interaction blocks and an intra-graph interaction block. The inter-graph interaction blocks learn the node-to-node interactions within each graph. The intra-graph interaction block learns the graph-to-graph interactions at both global- and local-levels with the help of the virtual nodes that collect and summarize the information from the entire graphs. SCUBa-Net is systematically evaluated on four multi-organ datasets, including colorectal, prostate, gastric, and bladder cancers. The experimental results demonstrate the effectiveness of SCUBa-Net in comparison to the state-of-the-art convolutional neural networks, Transformer, and graph neural networks.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39002099

RESUMO

PURPOSE: The accurate and timely assessment of the collateral perfusion status is crucial in the diagnosis and treatment of patients with acute ischemic stroke. Previous works have shown that collateral imaging, derived from CT angiography, MR perfusion, and MR angiography, aids in evaluating the collateral status. However, such methods are time-consuming and/or sub-optimal due to the nature of manual processing and heuristics. Recently, deep learning approaches have shown to be promising for generating collateral imaging. These, however, suffer from the computational complexity and cost. METHODS: In this study, we propose a mobile, lightweight deep regression neural network for collateral imaging in acute ischemic stroke, leveraging dynamic susceptibility contrast MR perfusion (DSC-MRP). Built based upon lightweight convolution and Transformer architectures, the proposed model manages the balance between the model complexity and performance. RESULTS: We evaluated the performance of the proposed model in generating the five-phase collateral maps, including arterial, capillary, early venous, late venous, and delayed phases, using DSC-MRP from 952 patients. In comparison with various deep learning models, the proposed method was superior to the competitors with similar complexity and was comparable to the competitors of high complexity. CONCLUSION: The results suggest that the proposed model is able to facilitate rapid and precise assessment of the collateral status of patients with acute ischemic stroke, leading to improved patient care and outcome.

3.
Comput Methods Programs Biomed ; 248: 108112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479146

RESUMO

BACKGROUND AND OBJECTIVE: Multi-class cancer classification has been extensively studied in digital and computational pathology due to its importance in clinical decision-making. Numerous computational tools have been proposed for various types of cancer classification. Many of them are built based on convolutional neural networks. Recently, Transformer-style networks have shown to be effective for cancer classification. Herein, we present a hybrid design that leverages both convolutional neural networks and transformer architecture to obtain superior performance in cancer classification. METHODS: We propose a dual-branch dual-task adaptive cross-weight feature fusion network, called DAX-Net, which exploits heterogeneous feature representations from the convolutional neural network and Transformer network, adaptively combines them to boost their representation power, and conducts cancer classification as categorical classification and ordinal classification. For an efficient and effective optimization of the proposed model, we introduce two loss functions that are tailored to the two classification tasks. RESULTS: To evaluate the proposed method, we employed colorectal and prostate cancer datasets, of which each contains both in-domain and out-of-domain test sets. For colorectal cancer, the proposed method obtained an accuracy of 88.4%, a quadratic kappa score of 0.945, and an F1 score of 0.831 for the in-domain test set, and 84.4%, 0.910, and 0.768 for the out-of-domain test set. For prostate cancer, it achieved an accuracy of 71.6%, a kappa score of 0.635, and an F1 score of 0.655 for the in-domain test set, 79.2% accuracy, 0.721 kappa score, and 0.686 F1 score for the first out-of-domain test set, and 58.1% accuracy, 0.564 kappa score, and 0.493 F1 score for the second out-of-domain test set. It is worth noting that the performance of the proposed method outperformed other competitors by significant margins, in particular, with respect to the out-of-domain test sets. CONCLUSIONS: The experimental results demonstrate that the proposed method is not only accurate but also robust to varying conditions of the test sets in comparison to several, related methods. These results suggest that the proposed method can facilitate automated cancer classification in various clinical settings.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/diagnóstico por imagem , Tomada de Decisão Clínica , Fontes de Energia Elétrica , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA