Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Cancers (Basel) ; 15(10)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37345086

RESUMO

The rapid development of targeted therapy paved the way toward personalized medicine for advanced non-small cell lung cancer (NSCLC). Lung adenocarcinoma (ADC) harboring actionable genetic alternations including epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), Kirsten rat sarcoma virus (ALK) and c-ros oncogene 1 (ROS1) treated with tyrosine kinase inhibitors (TKIs) incurred lesser treatment toxicity but better therapeutic responses compared with systemic chemotherapy. Angiogenesis inhibitors targeting vascular endothelial growth factor (VEGF) have also shown an increase in overall survival (OS) for NSCLC patients. However, acquired resistance to these targeted therapies remains a major obstacle to long-term maintenance treatment for lung ADC patients. The emergence of immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) or programmed cell death-ligand 1 (PD-L1) has changed the treatment paradigm for NSCLC tumors without actionable genetic alternations. Clinical studies have suggested, however, that there are no survival benefits with the combination of targeted therapy and ICIs. In this review, we will summarize and discuss the current knowledge on the tumor immune microenvironment and the dynamics of immune phenotypes, which could be crucial in extending the applicability of ICIs for this subpopulation of lung ADC patients.

3.
Cancers (Basel) ; 13(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34771509

RESUMO

Tobacco smoking is the top risk factor for lung cancer development. Nicotine in cigarettes can induce addiction, and its derivatives become potent carcinogens after metabolic activation and activate oncogenic signaling in lung epithelial cells through their expressed nicotinic acetylcholine receptors (nAChRs). However, the effects of smoking on the tumor immune microenvironment are under investigation. In the current study, we investigated whether nicotine activation of nicotinic acetylcholine receptor subunit α7 (nAChRα7, CHRNA7) would induce PD-L1 expression in lung epithelial cells. The expression levels of nAChRα7 and PD-L1 in eight human bronchial epithelial cell (HBEC) lines were measured after treatment with cigarette smoke extract (CSE) or nicotine derivatives. The results showed that PD-L1 expression levels increased in HBECs after exposure to CSE or nicotine derivatives. This induction of PD-L1 expression could be diminished by treatment with CHRNA7 small-interfering RNA, and the relevant signaling was mediated via STAT3 phosphorylation and NRF2 expression. In summary, this study demonstrated that the well-known nicotine derivative-activated nAChRα7 could induce STAT3/NRF2 pathways and subsequently promote PD-L1 expression in normal lung epithelial cells. This information provides mechanistic insight into cigarette smoke-induced immune evasion in lung epithelial cells.

4.
Transl Lung Cancer Res ; 9(5): 1873-1884, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33209609

RESUMO

BACKGROUND: Most studies associating circulating tumor DNA (ctDNA) with outcome in lung cancer treatment were either cross-sectional or, if longitudinal, only analyzed a limited number of genes. This study evaluated the potential of utilizing ctDNA profiled by a panel of common cancer genes to monitor tumor burden and to reveal molecular characteristics of tumor along treatment course. METHODS: Twenty Chinese non-small cell lung cancer (NSCLC) patients with serial plasma samples collected (I) before starting on either first- or second-line treatment, (II) at stable disease on treatment, and (III) upon disease progression, were analyzed for mutations in ctDNA using the PGDx 64-gene panel. Paired statistics compared mutation profiles between any two of the three time points. RESULTS: Proportions with detectable ctDNA decreased from 65% at baseline to 35% at stable disease and rose to 80% at progression (P=0.012, between stable disease and progression); median ctDNA levels (mutated fragments per mL) were 7.8, 0, and 24.7 at the three time points, respectively (P=0.013 between baseline and progression; P=0.007 between stable disease and progression). Although plasma epidermal growth factor receptor (EGFR) mutations were commonly detected, 15% of patients had mutations other than EGFR detected during progression, such as various types of TP53 mutations. CONCLUSIONS: ctDNA profiling in serial blood samples reflected tumor burden over time, and a multi-gene panel was more sensitive in indicating lung cancer progression on treatment than a single gene approach. The detection of additional oncogenic mutations or their disappearance suggested evolution of tumor heterogeneity along treatment course.

5.
Transl Lung Cancer Res ; 9(2): 294-305, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32420069

RESUMO

BACKGROUND: The Hippo signalling pathway plays an important role in regulating organ size and cell proliferation. Down-regulation of large tumour suppressor (LATS) protein homologs LATS1 or LATS2 has been found in lung cancer. LATS1 and LATS2 are the core components of the Hippo signalling pathway. LATS1 and LATS2 share some conserved structural features and exhibit redundant biological functions. The aim of this study was to dissect the interaction between these two homologs. METHODS: In lung adenocarcinoma (AD) cells, protein expression of LATS1 and LATS2 were determined by western blotting; cell viability and apoptosis were measured by MTT and annexin V staining after treatment with cisplatin; subcellular distributions of LATS proteins were determined by immunofluorescence microscopy; LATS2 expression was modulated by shRNA-mediated knockdown or ectopic expression in cancer cell lines. RESULTS: Manipulation of the expression of these two LATS kinases influenced cisplatin response in advanced lung AD cell lines. High LATS2-to-LATS1 ratio in H2023 cells was associated with cisplatin resistance, while low LATS2-to-LATS1 ratio in CL1-0 and CL83 cells was associated with sensitivity to cisplatin. Manipulating the LATS2-to-LATS1 ratio by LATS2 over-expression in CL1-0 and CL83 rendered them resistant to cisplatin treatment, whereas LATS2 knockdown in H2023 alleviated the LATS2-to-LATS1 ratio and sensitized cancer cells to cisplatin exposure. CONCLUSIONS: Our data suggested that the ratio of expression of LATS kinases played a role in the modulation of cisplatin sensitivity in advanced lung AD, and targeting of LATS proteins as a novel therapeutic strategy for lung AD deserves further investigation.

6.
Cancers (Basel) ; 11(1)2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658414

RESUMO

Anaplastic lymphoma kinase (ALK) translocation is an actionable mutation in lung adenocarcinoma. Nonetheless tumour consists of heterogeneous cell subpopulations with diverse phenotypes and genotypes, and cancer cells can actively release extracellular vesicles (EVs) to modulate the phenotype of other cells in the tumour microenvironment. We hypothesized that EVs derived from a drug-resistant subpopulation of cells could induce drug resistance in recipient cells. We have established ALK-translocated lung adenocarcinoma cell lines and subclones. The subclones have been characterized and the expression of EV-RNAs determined by quantitative polymerase chain reaction. The effects of EV transfer on drug resistance were examined in vitro. Serum EV-RNA was assayed serially in two patients prescribed ALK-tyrosine kinase inhibitor (ALK-TKI) treatment. We demonstrated that the EVs from an ALK-TKI-resistant subclone could induce drug resistance in the originally sensitive subclone. EV-RNA profiling revealed that miRNAs miR-21-5p and miR-486-3p, and lncRNAs MEG3 and XIST were differentially expressed in the EVs secreted by the resistant subclones. These circulating EV-RNA levels have been found to correlate with disease progression of EML4-ALK-translocated lung adenocarcinoma in patients prescribed ALK-TKI treatment. The results from this study suggest that EVs released by a drug-resistant subpopulation can induce drug resistance in other subpopulations and may sustain intratumoural heterogeneity.

7.
Int J Oncol ; 54(3): 1010-1020, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569106

RESUMO

The Wnt signaling pathway is known to serve an important role in the control of cell migration. The present study analyzed the mechanisms underlying the in vitro modulation of the migration of nasopharyngeal carcinoma (NPC) cells by the CREB­binding protein/catenin antagonist and Wnt modulator ICG­001. The results revealed that ICG­001­mediated inhibition of tumor cell migration involved downregulated mRNA and protein expression of the Wnt target gene cluster of differentiation (CD)44. It was also demonstrated that ICG­001 downregulated the expression of CD44, and this effect was accompanied by restored expression of microRNA (miRNA)­150 in various NPC cell lines. Using a CD44 3'­untranslated region luciferase reporter assay, miR­150 was confirmed to be a novel CD44­targeting miRNA, which could directly target CD44 and subsequently regulate the migration of NPC cells. The present study provides further insight into the inhibition of tumor cell migration through the modulation of miRNA expression by the Wnt modulator ICG­001.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Movimento Celular/efeitos dos fármacos , Receptores de Hialuronatos/genética , MicroRNAs/genética , Carcinoma Nasofaríngeo/metabolismo , Pirimidinonas/farmacologia , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/antagonistas & inibidores , Receptores de Hialuronatos/metabolismo , Camundongos , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Via de Sinalização Wnt/efeitos dos fármacos
8.
BMC Pulm Med ; 18(1): 47, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29548305

RESUMO

BACKGROUND: Club cell protein-16 (CC16) expression has been associated with smoking-related lung function decline. The study hypothesis was that CC16 expression in both serum and bronchial epithelium is associated with lung function decline in smokers, and exposure to cigarette smoke will lead to reduction in CC16 expression in bronchial epithelial cells. METHODS: In a cohort of community-based male Chinese subjects recruited for lung function test in 2000, we reassessed their lung function ten years later and measured serum levels of CC16. CC16 expression was further assayed in bronchial epithelium from endobronchial biopsies taken from an independent cohort of subjects undergoing autofluorescence bronchoscopy, and tested for correlation between CC16 immunostaining intensity and lung function. In an in-vitro model, bronchial epithelial cells were exposed to cigarette smoke extract (CSE), and the expression levels of CC16 were measured in bronchial epithelial cells before and after exposure to CSE. RESULTS: There was a significant association between FEV1 decline and serum CC16 levels in smokers. Expression of CC16 in bronchial epithelium showed significant correlation with FEV1/FVC. Bronchial epithelial cells showed significant decrease in CC16 expression after exposure to CSE, followed by a subsequent rise in CC16 expression upon removal of CSE. CONCLUSIONS: Results of these clinical and laboratory investigations suggested that low serum CC16 was associated with smoking-related decline in lung function, demonstrated the first time in a Chinese cohort. The data also lend support to the putative role of CC16 in protection against smoking-related bronchial epithelial damage. (Abstract word count: 243) US CLINICAL TRIAL REGISTRY: NCT01185652 , first posted 20 August, 2010.


Assuntos
Fumar Cigarros/efeitos adversos , Células Epiteliais/metabolismo , Pulmão/fisiopatologia , Mucosa Respiratória/patologia , Uteroglobina/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Feminino , Volume Expiratório Forçado , Hong Kong , Humanos , Modelos Lineares , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Uteroglobina/genética
9.
Front Pharmacol ; 8: 783, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29180961

RESUMO

Angiogenesis is the formation of new blood vessels from the existing vasculature, which is involved in multiple biological processes, including atherosclerosis, ischemic heart disease, and cancer. Ginsenoside-Rb1 (Rb1), the most abundant ginsenoside isolated form Panax ginseng, has been identified as a promising anti-angiogenic agent via the up-regulation of PEDF. However, the underlying molecular mechanisms still unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were selected to perform in vitro assays. Rb1 (0-20 nM) treatment induced pigment epithelial-derived factor (PEDF) protein expression in concentration and time-dependent manners. Interestingly, it was also demonstrated that the exposure of Rb1 (10 nM) could increase PEDF protein expression without any alteration on mRNA level, suggesting the involvement of posttranscriptional regulation. Furthermore, bioinformatics predictions indicated the regulation of miR-33a on PEDF mRNA 3'-UTR, which was further confirmed by luciferase reporter gene assay and real-time PCR. Over-expression of pre-miR-33a was found to regress partly Rb1-mediated PEDF increment and anti-angiogenic effect in HUVECs. Additionally, Rb1-reduced miR-33a and increased PEDF expression was prevented by pre-incubation with peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist (GW9662) or transfection with PPAR-γ siRNA in HUVECs. Taken together, our findings demonstrated that Rb1 exerted anti-angiogenic effects through PPAR-γ signaling pathway via modulating miR-33a and PEDF expressions. Thus, Rb1 may have the potential of being developed as an anti-angiogenic agent, however, further appropriate studies are warranted to evaluate the effect in vivo.

10.
Cell Mol Life Sci ; 74(19): 3613-3630, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28523344

RESUMO

MicroRNAs (miRNAs) are a family of non-coding RNAs that play crucial roles in regulating various normal cellular responses. Recent studies revealed that the canonical miRNA biogenesis pathway is subject to sophisticated regulation. Hormonal control of miRNA biogenesis by androgen and estrogen has been demonstrated, but the direct effects of the glucocorticoid receptor (GR) on miRNA biogenesis are unknown. This study revealed the role of GR in miRNA maturation. We showed that two GR agonists, dexamethasone and ginsenoside-Rg1 rapidly suppressed the expression of mature miR-15b, miR-23a, and miR-214 in human endothelial cells. RNA pulldown coupled with proteomic analysis identified GTPase-activating protein (SH3 domain) binding protein 1 (G3BP1) as one of the RNA-binding proteins mediating GR-regulated miRNA maturation. Activated GR induced phosphorylation of v-AKT Murine Thymoma Viral Oncogene Homologue (AKT) kinase, which in turn phosphorylated and promoted nuclear translocation of G3BP1. The nuclear G3BP1 bound to the G3BP1 consensus sequence located on primary miR-15b~16-2 and miR-23a~27a~24-2 to inhibit their maturation. The findings from this study have advanced our understanding of the non-genomic effects of GR in the vascular system.


Assuntos
DNA Helicases/metabolismo , MicroRNAs/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Receptores de Glucocorticoides/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Bases , Sítios de Ligação , DNA Helicases/química , Células Endoteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/química , MicroRNAs/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Receptores de Glucocorticoides/agonistas
11.
J Ginseng Res ; 40(2): 151-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27158236

RESUMO

BACKGROUND: Ginsenoside-Rg3, the pharmacologically active component of red ginseng, has been found to inhibit tumor growth, invasion, metastasis, and angiogenesis in various cancer models. Previously, we found that 20(R)-ginsenoside-Rg3 (Rg3) could inhibit angiogenesis. Since microRNAs (miRNAs) have been shown to affect many biological processes, they might play an important role in ginsenoside-mediated angiomodulation. METHODS: In this study, we examined the underlying mechanisms of Rg3-induced angiosuppression through modulating the miRNA expression. In the miRNA-expression profiling analysis, six miRNAs and three miRNAs were found to be up- or down-regulated in vascular-endothelial-growth-factor-induced human-umbilical-vein endothelial cells (HUVECs) after Rg3 treatment, respectively. RESULTS: A computational prediction suggested that mature hsa-miR-520h (miR-520h) targets ephrin receptor (Eph) B2 and EphB4, and hence, affecting angiogenesis. The up-regulation of miR-520h after Rg3 treatment was validated by quantitative real-time polymerase chain reaction, while the protein expressions of EphB2 and EphB4 were found to decrease, respectively. The mimics and inhibitors of miR-520h were transfected into HUVECs and injected into zebra-fish embryos. The results showed that overexpression of miR-520h could significantly suppress the EphB2 and EphB4 protein expression, proliferation, and tubulogenesis of HUVECs, and the subintestinal-vessel formation of the zebra fish. CONCLUSION: These results might provide further information on the mechanism of Rg3-induced angiosuppression and the involvement of miRNAs in angiogenesis.

12.
Toxicol Appl Pharmacol ; 287(3): 276-83, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26115870

RESUMO

Therapeutic angiogenesis has been implicated in ischemic diseases and wound healing. Ginsenoside-Rg1 (Rg1), one of the most abundant active components of ginseng, has been demonstrated as an angiogenesis-stimulating compound in different models. There is increasing evidence implicating microRNAs (miRNAs), a group of non-coding RNAs, as important regulators of angiogenesis, but the role of microRNAs in Rg1-induced angiogenesis has not been fully explored. In this report, we found that stimulating endothelial cells with Rg1 could reduce miR-23a expression. In silico experiments predicted hepatocyte growth factor receptor (MET), a well-established mediator of angiogenesis, as the target of miR-23a. Transfection of the miR-23a precursor or inhibitor oligonucleotides validated the inverse relationship of miR-23a and MET expression. Luciferase reporter assays further confirmed the interaction between miR-23a and the MET mRNA 3'-UTR. Intriguingly, ginsenoside-Rg1 was found to increase MET protein expression in a time-dependent manner. We further demonstrated that ginsenoside-Rg1-induced angiogenic activities were indeed mediated through the down-regulation of miR-23a and subsequent up-regulation of MET protein expression, as confirmed by gain- and loss-of-function angiogenic experiments. In summary, our results demonstrated that ginsenoside-Rg1 could induce angiogenesis by the inverse regulation of MET tyrosine kinase receptor expression through miR-23a. This study has broadened our understanding of the non-genomic effects of ginsenoside-Rg1, and provided molecular evidence that warrant further development of natural compound as novel angiogenesis-promoting therapy.


Assuntos
Indutores da Angiogênese/farmacologia , Ginsenosídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , MicroRNAs/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/metabolismo , Regiões 3' não Traduzidas , Sítios de Ligação , Células Cultivadas , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/enzimologia , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-met/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção
13.
AAPS PharmSciTech ; 15(5): 1252-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24895076

RESUMO

Ginsenoside Rb1 (Rb1) is the most predominant ginsenoside isolated from the roots of ginseng (Panax ginseng C. A. Meyer). This compound is active in various human biological pathways that are involved in human collagen synthesis and inhibition of cell apoptosis. In this study, the skin-whitening effects of Rb1 were investigated in B16 melanoma cells. Our results showed that Rb1 inhibited melanogenesis in α-melanocyte-stimulating hormone (α-MSH)-stimulated B16 cells in a dose-dependent manner, which collectively indicated that Rb1 may have skin-whitening effects and may be formulated into skin-whitening products for skin care. Accordingly, a ginsenoside collagen transdermal patch was developed as a vehicle to topically deliver Rb1 into pig skin. The percutaneous permeation, retention within skin, and release in vitro of Rb1 from seven transdermal patch formulas were studied. It was determined that the best formula for ginsenoside collagen transdermal patch is made of protein collagen hydrolysate powder (PCHP) 2.0% (w/w), methyl cellulose (MC) 0.5% (w/w), polyethyleneglycol 6000 (PEG6000) 0.5% (w/w), ginsenoside 0.036% (w/w), azone 0.4% (v/w), menthol 0.20% (w/w), and water.


Assuntos
Ginsenosídeos/uso terapêutico , Hiperpigmentação/tratamento farmacológico , Melaninas/antagonistas & inibidores , Melaninas/biossíntese , Administração Cutânea , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Colágeno , Preparações de Ação Retardada , Ginsenosídeos/administração & dosagem , Humanos , Técnicas In Vitro , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Permeabilidade , Suínos , Adesivo Transdérmico
14.
Chin Med ; 9(1): 11, 2014 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-24690317

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) has a high incidence rate in Southern China. Although there are conventional therapies, the side effects and toxicities are not always tolerable for patients. Recently, the tumoricidal effect of ginsenosides on different cancer cells has been studied. This study aims to investigate the anti-cancer effect of ginsenosides on NPC cells and their underlying mechanism. METHODS: The cytotoxicity of ginsenosides on NPC cell line HK-1 was measured by MTT assay. Apoptosis was detected by propidium iodide staining followed by flow cytometry. A xenograft tumor model was established by injecting nude mice with HK-1 cells. The activation of caspases and apoptosis-inducing factor (AIF) were evaluated by Western blot analysis. Nuclear translocation of AIF was also studied by immunofluorescence staining. Mitochondrial membrane potential was measured by JC-1 dye using flow cytometry. RESULTS: Four ginsenosides, 20 (S)-Rh2, compound K (CK), panaxadiol (PD) and protopanaxadiol (PPD), induced apoptotic cell death in HK-1 cells in a concentration-dependent manner. CK inhibited HK-1 xenograft tumor growth most extensively and depleted mitochondrial membrane potential depolarization and induced translocation of AIF from cytoplasm to nucleus in HK-1 cells. In addition, depletion of AIF by siRNA abolished CK-induced HK-1 cell death. CONCLUSION: Ginsenoside CK-induced apoptosis of HK-1 cells was mediated by the mitochondrial pathway and could significantly inhibit tumor growth in vivo.

15.
Biochem Pharmacol ; 84(4): 532-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22692056

RESUMO

Wrinkle formation is one of the primary characteristics of skin aging, the major cause of wrinkle is the loss of structural protein type I collagen in dermal layer of skin. Topical application of natural substances to reduce wrinkle is gaining attention in recent years. Although a number of polyphenoic compounds are suggested to prevent ultraviolet-induced wrinkle, very few of them are able to increase type I collagen synthesis directly. Ginseng has been known in folk medicine of its beneficial effect to skin. The present study investigate the effect of ginsenoside on type I collagen induction in human dermal fibroblasts. Ginsenoside Rb1 was shown to induce type I collagen expression in dermal fibroblasts in a dose- and time-dependent manner. Recent studies suggest the important post-transcriptional regulatory role of microRNAs; here we demonstrated that miR-25 can directly inhibit type I collagen protein expression, and treatment of fibroblasts with Rb1 can reduce the inhibition by decreasing miR-25 level. Furthermore, we identified that the nuclear receptor, peroxisome proliferator-activated receptor-delta (PPARδ) is the key mediator of Rb1-induced type I collagen expression. Knockdown of PPARδ by small-interference RNA abolished the Rb1-induced type I collagen production and reversed the Rb1-suppressed miR-25 expression. These results demonstrated that ginsenoside Rb1 can increase target gene expression through transcriptional pathway, at the same time, inhibit the corresponding miRNA expression to minimize the translation repression. Furthermore, this study provide solid support of ginsenoside Rb1-induced type I collagen expression, which warrant further study in the dermatological application of ginsenosides in skin disorders.


Assuntos
Colágeno Tipo I/biossíntese , Derme/citologia , Fibroblastos/efeitos dos fármacos , Ginsenosídeos/farmacologia , PPAR delta/metabolismo , Células Cultivadas , Colágeno Tipo I/genética , Relação Dose-Resposta a Droga , Fibroblastos/metabolismo , Técnicas de Silenciamento de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , PPAR delta/genética , RNA Interferente Pequeno/genética
16.
Biochem Pharmacol ; 83(7): 893-902, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22234331

RESUMO

Ginsenosides are considered the major constituents that are responsible for most of the pharmacological actions of ginseng. However, some ginsenosides exist as stereoisomeric pairs, detailed and molecular exposition based on the structural differences of ginsenoside stereoisomers has not been emphasized in most studies. Here we explore the functional differences of ginsenoside Rg3 stereoisomers on angiogenesis. In this study, we demonstrated the distinctive differential angiogenic activities of 20(S)-Rg3 and 20(R)-Rg3 stereoisomers. 20(S)-Rg3 at micromolar concentration promotes human endothelial cells proliferation, migration and tube formation in vitro, as well as ex vivo endothelial sprouting. The effects induced by 20(S)-Rg3 are significantly more potent than 20(R)-Rg3. These effects are partially mediated through the activation of AKT/ERK-eNOS signaling pathways. Moreover, knockdown of peroxisome proliferator-activated receptor-gamma (PPARγ) by specific small interference RNA abolished the 20(S)-Rg3-induced angiogenesis, indicating that PPARγ is responsible for mediating the angiogenic activity of Rg3. Using reporter gene assay, the PPARγ agonist activity of 20(S)-Rg3 has been found 10-fold higher than that of 20(R)-Rg3. Computer modeling also revealed the differential binding is due to the chiral center of 20(S)-Rg3 can form a critical hydrogen bond with Tyr473 of PPARγ ligand binding domain. The present study elucidated the differential angiogenic effects of Rg3 stereoisomers by acting as agonist of PPARγ. The results shed light on the structural difference between two ginsenoside stereoisomers that can lead to significant differential physiological outcomes which should be carefully considered in the future development of ginsenoside-based therapeutics.


Assuntos
Indutores da Angiogênese/farmacologia , Ginsenosídeos/farmacologia , PPAR gama/metabolismo , Indutores da Angiogênese/química , Western Blotting , Técnicas de Cultura de Células , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Células Endoteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Genes Reporter , Ginsenosídeos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Estrutura Molecular , PPAR gama/genética , RNA Interferente Pequeno/genética , Estereoisomerismo , Relação Estrutura-Atividade , Transfecção
17.
Biochem Pharmacol ; 83(5): 598-607, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22178720

RESUMO

Angiogenesis, the development of neovessels from pre-existing vessels, is obligatory for solid tumors survival, growth, invasion, and metastasis. Many anti-angiogenic agents are small molecules originated from natural sources. Recently, angiosuppressive effects of indirubin and its derivatives, the active components in indigo-producing herbs, have been shown to possess anti-viral and anti-inflammatory potentials. In this study, we identified another indirubin derivative, indirubin-3'-(2,3 dihydroxypropyl)-oximether (E804), could exhibit potent angiosuppressive effects. In vitro study showed that E804 could significantly inhibit human umbilical vein endothelial cells proliferation, migration, and tube formation in a concentration-dependent manner (0.4-40 µM); at the concentration of 1 µmol or above, angiosuppressive potency of E804 was found to be more significant than indirubin-3'-oxime. Using in vivo Matrigel plug model and directed-in vivo-angiogenesis-assay (DIVAA), E804 was shown more effective to attenuate the VEGF/bFGF-induced neovessel formation. The hemoglobin content and the invaded endothelial cells in the implants were also greatly reduced. Results from the aortic ring assay indicated E804 (4 µM) could completely suppress ex vivo sprouting of endothelial cells from the rat aorta fragments; with concomitant reduction of gelatinolytic activities of matrix metalloproteinase-2 and -9. E804 also concentration-dependently (0.04-10 µM) inhibited the subintestinal vessels formation in zebrafish embryos. This study provides the first evidence that E804, a novel indirubin derivative, could more effectively inhibit angiogenesis. With the improved anti-angiogenic potency when compared with indirubin-3'oxime, E804 would be a new potential candidate in the treatment of angiogenesis-dependent diseases.


Assuntos
Indóis/farmacologia , Neovascularização Patológica/tratamento farmacológico , Animais , Aorta/citologia , Células Cultivadas , Embrião não Mamífero/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Humanos , Indóis/química , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Estrutura Molecular , Oximas , Ratos , Peixe-Zebra
18.
Drug Metab Dispos ; 40(1): 120-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21956953

RESUMO

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon ubiquitously existing in the environment. Its metabolites have been shown to cause DNA damage and cellular dysfunction in humans. Panax ginseng C.A. Meyer is a Chinese medicinal herb, and ginsenosides are the main active constituent of ginseng. Accumulating evidence had indicated that ginseng extract and ginsenosides possess cytoprotective effects. In this study, the protective effect of ginsenosides on BaP-induced DNA damage in human dermal fibroblasts (HDFs) and HepG2 cells was investigated. The genotoxic effect of BaP was measured by the comet assay. Results showed that tail moment was increased in BaP-treated cells, but cotreatment of ginsenoside 20(S)-Rg3 can significantly decrease BaP-induced DNA damage. A downstream mechanistic study revealed that 20(S)-Rg3 increased the gene expression of an important phase II detoxifying enzyme NAD(P)H:quinine oxidoreductase 1. The effect was also associated with the activation of protein kinase B (Akt) and nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). These results indicated that 20(S)-Rg3 might protect HDFs from BaP-induced DNA damage through the activation of the phosphatidylinositol 3-kinase/Akt/Nrf2 pathway. Our results also demonstrated that 20(S)-Rg3 is a functional ligand of pregnane X receptor (PXR), a nuclear receptor that mediates the induction of drug clearance pathways. Subsequent knockdown of PXR expression by small interfering RNA confirmed the involvement of PXR on the protective effects of 20(S)-Rg3 against BaP-induced DNA damage. In summary, ginsenoside 20(S)-Rg3 can protect against BaP-induced genotoxicity in human cells, suggesting that ginseng may serve as a natural cytoprotective agent against environmental carcinogens.


Assuntos
Benzo(a)pireno/toxicidade , Citoproteção/fisiologia , Dano ao DNA/fisiologia , Ginsenosídeos/fisiologia , Panax , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Ginsenosídeos/metabolismo , Células Hep G2 , Humanos , Recém-Nascido , Panax/metabolismo , Ligação Proteica/fisiologia
19.
Free Radic Biol Med ; 48(3): 437-45, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19932166

RESUMO

Ginsenosides, the active components of the famous Chinese herb ginseng, have been suggested to possess cardiovascular-protective effects. The mechanism of ginsenosides is believed to be associated with their ability to prevent cellular oxidative stress. The purpose of this study was to explore the cytoprotective effects of the ginsenoside protopanaxatriol (PPT) on hydrogen peroxide (H(2)O(2))-induced endothelial cell injury and cell death. Pretreatment of human umbilical vein endothelial cells (HUVECs) with PPT for 24 h was able to protect the cells against H(2)O(2)-induced injury. In addition to cell death, pretreatment with PPT could also reduce H(2)O(2)-induced DNA damage, overactivation of the DNA repair enzyme PARP-1, and concomitant depletion of the intracellular substrate NAD(+). Furthermore, PPT could reverse the decrease in ATP/ADP ratio caused by H(2)O(2). The metabolism of glutathione was also changed. H(2)O(2) could induce a significant decrease in GSH level resulting in a decrease in the GSH/GSSG ratio. This could be prevented by pretreatment with PPT. The action was associated with increasing activities of the GSH-metabolizing enzymes glutathione reductase and glutathione peroxidase. These findings suggest that the ginsenoside PPT could protect HUVECs against H(2)O(2)-induced cell death via its action against oxidative stress, which may be responsible for the cardiovascular-protective action of ginseng.


Assuntos
Apoptose/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Ginsenosídeos/farmacologia , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Sapogeninas/farmacologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , NAD/metabolismo , Oxirredução , Estresse Oxidativo , Panax/química , Poli(ADP-Ribose) Polimerases/metabolismo , Veias Umbilicais/citologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA