Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6780, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514661

RESUMO

Cancer diseases constitute one of the most significant societal challenges. In this paper, we introduce a novel histopathological dataset for prostate cancer detection. The proposed dataset, consisting of over 2.6 million tissue patches extracted from 430 fully annotated scans, 4675 scans with assigned binary diagnoses, and 46 scans with diagnoses independently provided by a group of histopathologists can be found at https://github.com/michalkoziarski/DiagSet . Furthermore, we propose a machine learning framework for detection of cancerous tissue regions and prediction of scan-level diagnosis, utilizing thresholding to abstain from the decision in uncertain cases. The proposed approach, composed of ensembles of deep neural networks operating on the histopathological scans at different scales, achieves 94.6% accuracy in patch-level recognition and is compared in a scan-level diagnosis with 9 human histopathologists showing high statistical agreement.


Assuntos
Redes Neurais de Computação , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Aprendizado de Máquina , Neoplasias da Próstata/diagnóstico por imagem , Patologistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA