Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Biomed Pharmacother ; 174: 116434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513592

RESUMO

The cilium is a microtubule-based organelle that plays a pivotal role in embryonic development and maintenance of physiological functions in the human body. In addition to their function as sensors that transduce diverse extracellular signals, including growth factors, fluid flow, and physical forces, cilia are intricately involved in cell cycle regulation and preservation of DNA integrity, as their formation and resorption dynamics are tightly linked to cell cycle progression. Recently, several studies have linked defects in specific ciliary proteins to the DNA damage response. However, it remains unclear whether and how primary cilia contribute to cancer development. Mebendazole (MBZ) is an anthelmintic drug with anticancer properties in some cancer cells. MBZ is continuously being tested for clinical studies, but the precise mechanism of its anticancer activities remains unknown. Here, using Xenopus laevis embryos as a model system, we discovered that MBZ significantly hinders cilia formation and induces DNA damage. Remarkably, primary cilium-bearing cancer cells exhibited heightened vulnerability to combined treatment with MBZ and conventional anticancer drugs. Our findings shed light on the specific influence of MBZ on cilia, rather than cytosolic microtubules, in triggering DNA damage, elucidating a previously unidentified mechanism underlying potential MBZ-mediated cancer therapy.


Assuntos
Cílios , Dano ao DNA , Mebendazol , Xenopus laevis , Cílios/efeitos dos fármacos , Cílios/metabolismo , Dano ao DNA/efeitos dos fármacos , Animais , Mebendazol/farmacologia , Humanos , Antineoplásicos/farmacologia , Sinergismo Farmacológico , Linhagem Celular Tumoral , Embrião não Mamífero/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo
2.
Ecotoxicol Environ Saf ; 269: 115820, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103469

RESUMO

Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Perfilação da Expressão Gênica , Peixe-Zebra , Animais , Xenopus laevis/genética , Trifosfato de Adenosina , Embrião não Mamífero , Teratogênicos/toxicidade
3.
Sci Rep ; 13(1): 23028, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38155158

RESUMO

Multiciliated cells (MCCs) are epithelial cells that control body fluid flow and contribute to the clearance of pathogenic microbes and other particles from the airways, egg transport in oviducts, and circulation of cerebrospinal fluid in the central nervous system. Although MCCs have shared functions to control fluid flow via coordinated motility of multiple ciliary structures, they are found in multiple mammalian tissues originating from distinct germ layers and differentiate via distinct developmental pathways. To understand the similarities and differences of MCCs in multiple tissues, we investigated single-cell transcriptome data of nasal epithelial cells, bronchial tubes, fallopian tubes, and ependymal cells in the subventricular zone from humans and mice by cross-species data integration. Expression of cilia-associated genes was indistinguishable between these MCCs, although cell populations had unique properties by the species and tissue, demonstrating that they share the same final differentiation status for ciliary functions. We further analyzed the final differentiation step of MCCs from their distinctive progenitors and confirmed their convergent gene set expression for ciliogenesis at the final step. These results may provide new insight into understanding ciliogenesis during the developmental process.


Assuntos
Cílios , Células Epiteliais , Humanos , Feminino , Camundongos , Animais , Diferenciação Celular/genética , Cílios/metabolismo , Células Epiteliais/metabolismo , Mamíferos
4.
Biomedicines ; 11(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001935

RESUMO

Patient-derived xenograft (PDX) models, which can retain the characteristics of original tumors in an in vivo-mimicking environment, have been developed to identify better treatment options. However, although original tumors and xenograft tissues mostly share oncogenic mutations and global gene expression patterns, their detailed mutation profiles occasionally do not overlap, indicating that selection occurs in the xenograft environment. To understand this mutational alteration in xenografts, we established 13 PDX models derived from 11 brain tumor patients and confirmed their histopathological similarity. Surprisingly, only a limited number of somatic mutations were shared between the original tumor and xenograft tissue. By analyzing deleteriously mutated genes in tumors and xenografts, we found that previously reported brain tumor-related genes were enriched in PDX samples, demonstrating that xenografts are a valuable platform for studying brain tumors. Furthermore, mutated genes involved in cilium movement, microtubule depolymerization, and histone methylation were enriched in PDX samples compared with the original tumors. Even with the limitations of the heterogeneity of clinical lesions with a heterotropic model, our study demonstrates that PDX models can provide more information in genetic analysis using samples with high heterogeneity, such as brain tumors.

5.
Sci Adv ; 9(14): eadd5745, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37027470

RESUMO

The specialized cell types of the mucociliary epithelium (MCE) lining the respiratory tract enable continuous airway clearing, with its defects leading to chronic respiratory diseases. The molecular mechanisms driving cell fate acquisition and temporal specialization during mucociliary epithelial development remain largely unknown. Here, we profile the developing Xenopus MCE from pluripotent to mature stages by single-cell transcriptomics, identifying multipotent early epithelial progenitors that execute multilineage cues before specializing into late-stage ionocytes and goblet and basal cells. Combining in silico lineage inference, in situ hybridization, and single-cell multiplexed RNA imaging, we capture the initial bifurcation into early epithelial and multiciliated progenitors and chart cell type emergence and fate progression into specialized cell types. Comparative analysis of nine airway atlases reveals an evolutionary conserved transcriptional module in ciliated cells, whereas secretory and basal types execute distinct function-specific programs across vertebrates. We uncover a continuous nonhierarchical model of MCE development alongside a data resource for understanding respiratory biology.


Assuntos
Células Epiteliais , Animais , Xenopus laevis , Epitélio/metabolismo , Células Epiteliais/metabolismo , Diferenciação Celular/genética
6.
Dev Cell ; 58(4): 320-334.e8, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36800996

RESUMO

Exosomes transport a variety of macromolecules and modulate intercellular communication in physiology and disease. However, the regulation mechanisms that determine exosome contents during exosome biogenesis remain poorly understood. Here, we find that GPR143, an atypical GPCR, controls the endosomal sorting complex required for the transport (ESCRT)-dependent exosome biogenesis pathway. GPR143 interacts with HRS (an ESCRT-0 Subunit) and promotes its association to cargo proteins, such as EGFR, which subsequently enables selective protein sorting into intraluminal vesicles (ILVs) in multivesicular bodies (MVBs). GPR143 is elevated in multiple cancers, and quantitative proteomic and RNA profiling of exosomes in human cancer cell lines showed that the GPR143-ESCRT pathway promotes secretion of exosomes that carry unique cargo, including integrins signaling proteins. Through gain- and loss-of-function studies in mice, we show that GPR143 promotes metastasis by secreting exosomes and increasing cancer cell motility/invasion through the integrin/FAK/Src pathway. These findings provide a mechanism for regulating the exosomal proteome and demonstrate its ability to promote cancer cell motility.


Assuntos
Exossomos , Neoplasias , Humanos , Animais , Camundongos , Exossomos/metabolismo , Proteômica , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Transporte Proteico , Transporte Biológico , Corpos Multivesiculares/metabolismo , Neoplasias/metabolismo , Proteínas do Olho/metabolismo , Glicoproteínas de Membrana/metabolismo
7.
Aging Cell ; 21(9): e13694, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35984750

RESUMO

Progressive iron accumulation in the substantia nigra in the aged human brain is a major risk factor for Parkinson's disease and other neurodegenerative diseases. Heavy metals, such as iron, produce reactive oxygen species and consequently oxidative stress in cells. It is unclear, however, how neurons in the substantia nigra are protected against the age-related, excessive accumulation of iron. In this study, we examined the cellular response of the substantia nigra against age-related iron accumulation in rats of different ages. Magnetic resonance imaging confirmed the presence of iron in 6-month-old rats; in 15-month-old rats, iron accumulation significantly increased, particularly in the midbrain. Transcriptome analysis of the region, in which iron deposition was observed, revealed an increase in stress response genes in older animals. To identify the genes related to the cellular response to iron, independent of neurodevelopment, we exposed the neuroblastoma cell line SH-SY5Y to a similar quantity of iron and then analyzed their transcriptomic responses. Among various stress response pathways altered by iron overloading in the rat brain and SH-SY5Y cells, the genes associated with topologically incorrect protein responses were significantly upregulated. Knockdown of HERPUD1 and CLU in this pathway increased susceptibility to iron-induced cellular stress, thus demonstrating their roles in preventing iron overload-induced toxicity. The current study details the neuronal response to excessive iron accumulation, which is associated with age-related neurodegenerative diseases.


Assuntos
Neuroblastoma , Doença de Parkinson , Idoso , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Lactente , Ferro/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/metabolismo , Ratos , Substância Negra/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217600

RESUMO

An ideal cancer therapeutic strategy involves the selective killing of cancer cells without affecting the surrounding normal cells. However, researchers have failed to develop such methods for achieving selective cancer cell death because of shared features between cancerous and normal cells. In this study, we have developed a therapeutic strategy called the cancer-specific insertions-deletions (InDels) attacker (CINDELA) to selectively induce cancer cell death using the CRISPR-Cas system. CINDELA utilizes a previously unexplored idea of introducing CRISPR-mediated DNA double-strand breaks (DSBs) in a cancer-specific fashion to facilitate specific cell death. In particular, CINDELA targets multiple InDels with CRISPR-Cas9 to produce many DNA DSBs that result in cancer-specific cell death. As a proof of concept, we demonstrate here that CINDELA selectively kills human cancer cell lines, xenograft human tumors in mice, patient-derived glioblastoma, and lung patient-driven xenograft tumors without affecting healthy human cells or altering mouse growth.


Assuntos
Sistemas CRISPR-Cas , Mutação INDEL , Neoplasias/genética , Animais , Morte Celular/genética , Quebras de DNA de Cadeia Dupla , Xenoenxertos , Humanos , Camundongos
9.
Antioxidants (Basel) ; 10(10)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34679770

RESUMO

Glutathione peroxidase 1 (Gpx1) and peroxiredoxin 2 (Prdx2) belong to the thiol peroxidase family of antioxidants, and have been studied for their antioxidant functions and roles in cancers. However, the physiological significance of Gpx1 and Prdx2 during vertebrate embryogenesis are lacking. Currently, we investigated the functional roles of Gpx1 and Prdx2 during vertebrate embryogenesis using Xenopus laevis as a vertebrate model. Our investigations revealed the zygotic nature of gpx1 having its localization in the eye region of developing embryos, whereas prdx2 exhibited a maternal nature and were localized in embryonic ventral blood islands. Furthermore, the gpx1-morphants exhibited malformed eyes with incompletely detached lenses. However, the depletion of prdx2 has not established its involvement with embryogenesis. A molecular analysis of gpx1-depleted embryos revealed the perturbed expression of a cryba1-lens-specific marker and also exhibited reactive oxygen species (ROS) accumulation in the eye regions of gpx1-morphants. Additionally, transcriptomics analysis of gpx1-knockout embryos demonstrated the involvement of Wnt, cadherin, and integrin signaling pathways in the development of malformed eyes. Conclusively, our findings indicate the association of gpx1 with a complex network of embryonic developmental pathways and ROS responses, but detailed investigation is a prerequisite in order to pinpoint the mechanistic details of these interactions.

10.
Antioxidants (Basel) ; 9(12)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322741

RESUMO

Glutathione peroxidase 3 (GPx3) belongs to the glutathione peroxidase family of selenoproteins and is a key antioxidant enzyme in multicellular organisms against oxidative damage. Downregulation of GPx3 affects tumor progression and metastasis and is associated with liver and heart disease. However, the physiological significance of GPx3 in vertebrate embryonic development remains poorly understood. The current study aimed to investigate the functional roles of gpx3 during embryogenesis. To this end, we determined gpx3's spatiotemporal expression using Xenopus laevis as a model organism. Using reverse transcription polymerase chain reaction (RT-PCR), we demonstrated the zygotic nature of this gene. Interestingly, the expression of gpx3 enhanced during the tailbud stage of development, and whole mount in situ hybridization (WISH) analysis revealed gpx3 localization in prospective tail region of developing embryo. gpx3 knockdown using antisense morpholino oligonucleotides (MOs) resulted in short post-anal tails, and these malformed tails were significantly rescued by glutathione peroxidase mimic ebselen. The gene expression analysis indicated that gpx3 knockdown significantly altered the expression of genes associated with Wnt, Notch, and bone morphogenetic protein (BMP) signaling pathways involved in tailbud development. Moreover, RNA sequencing identified that gpx3 plays a role in regulation of cell death in the developing embryo. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and phospho-histone 3 (PH3) staining confirmed the association of gpx3 knockdown with increased cell death and decreased cell proliferation in tail region of developing embryos, establishing the involvement of gpx3 in tailbud development by regulating the cell death. Furthermore, these findings are inter-related with increased reactive oxygen species (ROS) levels in gpx3 knockdown embryos, as measured by using a redox-sensitive fluorescent probe HyPer. Taken together, our results suggest that gpx3 plays a critical role in posterior embryonic development by regulating cell death and proliferation during vertebrate embryogenesis.

11.
Sci Rep ; 10(1): 6224, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32277121

RESUMO

Exposure to particulate matter (PM) in ambient air is known to increase the risk of cardiovascular disorders and mortality. The cytotoxicity of PM is mainly due to the abnormal increase of reactive oxygen species (ROS), which damage cellular components such as DNA, RNA, and proteins. The correlation between PM exposure and human disorders, including mortality, is based on long-term exposure. In this study we have investigated acute responses of mucus-secreting goblet cells upon exposure to PM derived from a heavy diesel engine. To this end, we employed the mucociliary epithelium of amphibian embryos and human Calu-3 cells to examine PM mucotoxicity. Our data suggest that acute exposure to PM significantly impairs mucus secretion and results in the accumulation of mucus vesicles in the cytoplasm of goblet cells. RNA-seq analysis revealed that acute responses to PM exposure significantly altered gene expression patterns; however, known regulators of mucus production and the secretory pathway were not significantly altered. Interestingly, pretreatment with α-tocopherol nearly recovered the hyposecretion of mucus from both amphibian and human goblet cells. We believe this study demonstrates the mucotoxicity of PM and the protective function of α-tocopherol on mucotoxicity caused by acute PM exposure from heavy diesel engines.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Células Caliciformes/efeitos dos fármacos , Material Particulado/efeitos adversos , Substâncias Protetoras/farmacologia , alfa-Tocoferol/farmacologia , Poluição do Ar/efeitos adversos , Animais , Anuros , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/prevenção & controle , Linhagem Celular Tumoral , Embrião não Mamífero , Células Caliciformes/metabolismo , Humanos , Muco/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Emissões de Veículos
12.
Int J Mol Med ; 43(2): 1105-1113, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30569092

RESUMO

Epigenetic modifier lysine demethylase 3a (Kdm3a) specifically demethylates mono­ and di­methylated ninth lysine of histone 3 and belongs to the Jumonji domain­containing group of demethylases. Kdm3a serves roles during various biological and pathophysiological processes, including spermatogenesis and metabolism, determination of sex, androgen receptor­mediated transcription and embryonic carcinoma cell differentiation. In the present study, physiological functions of Kdm3a were evaluated during embryogenesis of Xenopus laevis. Spatiotemporal expression pattern indicated that kdm3a exhibited its expression from early embryonic stages until tadpole stage, however considerable increase of kdm3a expression was observed during the neurula stage of Xenopus development. Depleting kdm3a using kdm3a antisense morpholino oligonucleotides induced anomalies, including head deformities, small­sized eyes and abnormal pigmentation. Whole­mount in situ hybridization results demonstrated that kdm3a knockdown was associated with defects in neural crest migration. Further, quantitative polymerase chain reaction revealed abnormal expression of neural markers in kdm3a morphants. RNA sequencing of kdm3a morphants indicated that kdm3a was implicated in mesoderm formation, cell adhesion and metabolic processes of embryonic development. In conclusion, the results of the present study indicated that Kdm3a may serve a role in neural development during Xenopus embryogenesis and may be targeted for treatment of developmental disorders. Further investigation is required to elucidate the molecular mechanism underlying the regulation of neural development by Kdm3a.


Assuntos
Desenvolvimento Embrionário/genética , Ossos Faciais/embriologia , Histona Desmetilases com o Domínio Jumonji/genética , Neurogênese/genética , Organogênese/genética , Crânio/embriologia , Proteínas de Xenopus/genética , Animais , Feminino , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Masculino , Xenopus laevis
13.
Epigenetics Chromatin ; 11(1): 72, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522514

RESUMO

BACKGROUND: Lysine-specific histone demethylase 5C (KDM5C) belongs to the jumonji family of demethylases and is specific for the di- and tri-demethylation of lysine 4 residues on histone 3 (H3K4 me2/3). KDM5C is expressed in the brain and skeletal muscles of humans and is associated with various biologically significant processes. KDM5C is known to be associated with X-linked mental retardation and is also involved in the development of cancer. However, the developmental significance of KDM5C has not been explored yet. In the present study, we investigated the physiological roles of KDM5C during Xenopus laevis embryonic development. RESULTS: Loss-of-function analysis using kdm5c antisense morpholino oligonucleotides indicated that kdm5c knockdown led to small-sized heads, reduced cartilage size, and malformed eyes (i.e., small-sized and deformed eyes). Molecular analyses of KDM5C functional roles using whole-mount in situ hybridization, ß-galactosidase staining, and reverse transcription-polymerase chain reaction revealed that loss of kdm5c resulted in reduced expression levels of neural crest specifiers and genes involved in eye development. Furthermore, transcriptome analysis indicated the significance of KDM5C in morphogenesis and organogenesis. CONCLUSION: Our findings indicated that KDM5C is associated with embryonic development and provided additional information regarding the complex and dynamic gene network that regulates neural crest formation and eye development. This study emphasizes the functional significance of KDM5C in Xenopus embryogenesis; however, further analysis is needed to explore the interactions of KDM5C with specific developmental genes.


Assuntos
Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Animais , Desenvolvimento Embrionário/genética , Olho/embriologia , Olho/metabolismo , Histonas/genética , Humanos , Metilação , Crista Neural/embriologia , Crista Neural/metabolismo , Organogênese/genética , Oxirredutases N-Desmetilantes/metabolismo , Xenopus laevis
14.
Sci Transl Med ; 10(462)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305454

RESUMO

Developing and mature chondrocytes constantly interact with and remodel the surrounding extracellular matrix (ECM). Recent research indicates that integrin-ECM interaction is differentially regulated during cartilage formation (chondrogenesis). Integrin signaling is also a key source of the catabolic reactions responsible for joint destruction in both rheumatoid arthritis and osteoarthritis. However, we do not understand how chondrocytes dynamically regulate integrin signaling in such an ECM-rich environment. Here, we found that developing chondrocytes express integrin-ß-like 1 (Itgbl1) at specific stages, inhibiting integrin signaling and promoting chondrogenesis. Unlike cytosolic integrin inhibitors, ITGBL1 is secreted and physically interacts with integrins to down-regulate activity. We observed that Itgbl1 expression was strongly reduced in the damaged articular cartilage of patients with osteoarthritis (OA). Ectopic expression of Itgbl1 protected joint cartilage against OA development in the destabilization of the medial meniscus-induced OA mouse model. Our results reveal ITGBL1 signaling as an underlying mechanism of protection against destructive cartilage disorders and suggest the potential therapeutic utility of targeting ITGBL1 to modulate integrin signaling in human disease.


Assuntos
Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Condrogênese , Integrina beta1/metabolismo , Osteoartrite/metabolismo , Osteoartrite/prevenção & controle , Idoso , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Condrócitos/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Matriz Extracelular/metabolismo , Face/embriologia , Regulação da Expressão Gênica , Humanos , Articulações/patologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/patologia , Xenopus/embriologia
15.
Epigenetics Chromatin ; 11(1): 33, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29921310

RESUMO

The lysine-specific histone demethylase 1A (KDM1A) was the first demethylase to challenge the concept of the irreversible nature of methylation marks. KDM1A, containing a flavin adenine dinucleotide (FAD)-dependent amine oxidase domain, demethylates histone 3 lysine 4 and histone 3 lysine 9 (H3K4me1/2 and H3K9me1/2). It has emerged as an epigenetic developmental regulator and was shown to be involved in carcinogenesis. The functional diversity of KDM1A originates from its complex structure and interactions with transcription factors, promoters, enhancers, oncoproteins, and tumor-associated genes (tumor suppressors and activators). In this review, we discuss the microenvironment of KDM1A in cancer progression that enables this protein to activate or repress target gene expression, thus making it an important epigenetic modifier that regulates the growth and differentiation potential of cells. A detailed analysis of the mechanisms underlying the interactions between KDM1A and the associated complexes will help to improve our understanding of epigenetic regulation, which may enable the discovery of more effective anticancer drugs.


Assuntos
Histona Desmetilases/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral , Progressão da Doença , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Histonas/metabolismo , Humanos , Metilação , Neoplasias/genética
16.
Sci Rep ; 7(1): 8874, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827763

RESUMO

Peroxiredoxin1 (Prdx1) is an antioxidant enzyme belonging to the peroxiredoxin family of proteins. Prdx1 catalyzes the reduction of H2O2 and alkyl hydroperoxide and plays an important role in different biological processes. Prdx1 also participates in various age-related diseases and cancers. In this study, we investigated the role of Prdx1 in pronephros development during embryogenesis. Prdx1 knockdown markedly inhibited proximal tubule formation in the pronephros and significantly increased the cellular levels of reactive oxygen species (ROS), which impaired primary cilia formation. Additionally, treatment with ROS (H2O2) severely disrupted proximal tubule formation, whereas Prdx1 overexpression reversed the ROS-mediated inhibition in proximal tubule formation. Epistatic analysis revealed that Prdx1 has a crucial role in retinoic acid and Wnt signaling pathways during pronephrogenesis. In conclusion, Prdx1 facilitates proximal tubule formation during pronephrogenesis by regulating ROS levels.


Assuntos
Peroxirredoxinas/metabolismo , Pronefro/embriologia , Pronefro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tretinoína/metabolismo , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Sequência Conservada , Cisteína , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Organogênese/genética , Peroxirredoxinas/química , Peroxirredoxinas/genética , Fenótipo , Xenopus laevis
17.
J Am Chem Soc ; 139(10): 3651-3662, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28156110

RESUMO

The inner mitochondrial membrane (IMM) proteome plays a central role in maintaining mitochondrial physiology and cellular metabolism. Various important biochemical reactions such as oxidative phosphorylation, metabolite production, and mitochondrial biogenesis are conducted by the IMM proteome, and mitochondria-targeted therapeutics have been developed for IMM proteins, which is deeply related for various human metabolic diseases including cancer and neurodegenerative diseases. However, the membrane topology of the IMM proteome remains largely unclear because of the lack of methods to evaluate it in live cells in a high-throughput manner. In this article, we reveal the in vivo topological direction of 135 IMM proteins, using an in situ-generated radical probe with genetically targeted peroxidase (APEX). Owing to the short lifetime of phenoxyl radicals generated in situ by submitochondrial targeted APEX and the impermeability of the IMM to small molecules, the solvent-exposed tyrosine residues of both the matrix and intermembrane space (IMS) sides of IMM proteins were exclusively labeled with the radical probe in live cells by Matrix-APEX and IMS-APEX, respectively and identified by mass spectrometry. From this analysis, we confirmed 58 IMM protein topologies and we could determine the topological direction of 77 IMM proteins whose topology at the IMM has not been fully characterized. We also found several IMM proteins (e.g., LETM1 and OXA1) whose topological information should be revised on the basis of our results. Overall, our identification of structural information on the mitochondrial inner-membrane proteome can provide valuable insights for the architecture and connectome of the IMM proteome in live cells.


Assuntos
Membranas Mitocondriais/metabolismo , Proteoma/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Mapeamento de Interação de Proteínas
18.
Cytogenet Genome Res ; 145(3-4): 243-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26066830

RESUMO

Genome duplication creates redundancy in proteins and their interaction networks, and subsequent smaller-scale gene duplication can further amplify genetic redundancy. Mutations then lead to the loss, maintenance or functional divergence of duplicated genes. Genome duplication occurred many times in African clawed frogs (genus Xenopus), and almost all extant species in this group evolved from a polyploid ancestor. To better understand the nature of selective constraints in a polyploid genome, we examined molecular polymorphism and divergence of duplicates and single-copy genes in 2 tetraploid African clawed frog species, Xenopus laevis and X. victorianus. We found that molecular polymorphism in the coding regions of putative duplicated genes was higher than in singletons, but not significantly so. Our findings also suggest that transcriptome evolution in polyploids is influenced by variation in the genome-wide mutation rate, and do not reject the hypothesis that gene dosage balance is also important.


Assuntos
Evolução Molecular , Duplicação Gênica , Polimorfismo Genético/genética , Tetraploidia , Xenopus/genética , Animais , Mapeamento Cromossômico , Dosagem de Genes , Modelos Genéticos , Fases de Leitura Aberta/genética , Filogenia , Regiões não Traduzidas/genética
19.
Elife ; 3: e01439, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24424412

RESUMO

The mechanisms linking systems-level programs of gene expression to discrete cell biological processes in vivo remain poorly understood. In this study, we have defined such a program for multi-ciliated epithelial cells (MCCs), a cell type critical for proper development and homeostasis of the airway, brain and reproductive tracts. Starting from genomic analysis of the cilia-associated transcription factor Rfx2, we used bioinformatics and in vivo cell biological approaches to gain insights into the molecular basis of cilia assembly and function. Moreover, we discovered a previously un-recognized role for an Rfx factor in cell movement, finding that Rfx2 cell-autonomously controls apical surface expansion in nascent MCCs. Thus, Rfx2 coordinates multiple, distinct gene expression programs in MCCs, regulating genes that control cell movement, ciliogenesis, and cilia function. As such, the work serves as a paradigm for understanding genomic control of cell biological processes that span from early cell morphogenetic events to terminally differentiated cellular functions. DOI: http://dx.doi.org/10.7554/eLife.01439.001.


Assuntos
Movimento Celular/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Animais , Cílios/metabolismo , Biologia Computacional , Proteínas de Ligação a DNA/genética , Bases de Dados Genéticas , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Humanos , Morfogênese , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Xenopus laevis/embriologia
20.
Mol Cell Proteomics ; 13(2): 666-77, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24255132

RESUMO

A major goal in proteomics is the comprehensive and accurate description of a proteome. This task includes not only the identification of proteins in a sample, but also the accurate quantification of their abundance. Although mass spectrometry typically provides information on peptide identity and abundance in a sample, it does not directly measure the concentration of the corresponding proteins. Specifically, most mass-spectrometry-based approaches (e.g. shotgun proteomics or selected reaction monitoring) allow one to quantify peptides using chromatographic peak intensities or spectral counting information. Ultimately, based on these measurements, one wants to infer the concentrations of the corresponding proteins. Inferring properties of the proteins based on experimental peptide evidence is often a complex problem because of the ambiguity of peptide assignments and different chemical properties of the peptides that affect the observed concentrations. We present SCAMPI, a novel generic and statistically sound framework for computing protein abundance scores based on quantified peptides. In contrast to most previous approaches, our model explicitly includes information from shared peptides to improve protein quantitation, especially in eukaryotes with many homologous sequences. The model accounts for uncertainty in the input data, leading to statistical prediction intervals for the protein scores. Furthermore, peptides with extreme abundances can be reassessed and classified as either regular data points or actual outliers. We used the proposed model with several datasets and compared its performance to that of other, previously used approaches for protein quantification in bottom-up mass spectrometry.


Assuntos
Biologia Computacional/métodos , Interpretação Estatística de Dados , Proteínas/análise , Proteômica/estatística & dados numéricos , Linhagem Celular Tumoral , Bases de Dados de Proteínas/estatística & dados numéricos , Humanos , Marcação por Isótopo/métodos , Leptospira interrogans/metabolismo , Leucemia Mieloide Aguda/metabolismo , Cadeias de Markov , Proteômica/métodos , Projetos de Pesquisa , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA