Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cells ; 40(9): 607-612, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28927262

RESUMO

When mammalian cells and animals face a variety of internal or external stresses, they need to make homeostatic changes so as to cope with various stresses. To this end, mammalian cells are equipped with two critical stress responses, autophagy and cellular senescence. Autophagy and cellular senescence share a number of stimuli including telomere shortening, DNA damage, oncogenic stress and oxidative stress, suggesting their intimate relationship. Autophagy is originally thought to suppress cellular senescence by removing damaged macromolecules or organelles, yet recent studies also indicated that autophagy promotes cellular senescence by facilitating the synthesis of senescence-associated secretory proteins. These seemingly opposite roles of autophagy may reflect a complex picture of autophagic regulation on cellular senescence, including different types of autophagy or a unique spatiotemporal activation of autophagy. Thus, a better understanding of autophagy process will lead us to not only elucidate the conundrum how autophagy plays dual roles in the regulation of cellular senescence but also helps the development of new therapeutic strategies for many human diseases associated with cellular senescence. We address the pro-senescence and anti-senescence roles of autophagy while focusing on the potential mechanistic aspects of this complex relationship between autophagy and cellular senescence.


Assuntos
Autofagia/genética , Carcinogênese/genética , Senescência Celular/genética , Estresse Fisiológico/genética , Animais , Dano ao DNA/genética , Humanos , Estresse Oxidativo/genética , Encurtamento do Telômero/genética
2.
PLoS Genet ; 12(12): e1006465, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27906959

RESUMO

Maintaining genomic integrity during DNA replication is essential for cellular survival and for preventing tumorigenesis. Proliferating cell nuclear antigen (PCNA) functions as a processivity factor for DNA replication, and posttranslational modification of PCNA plays a key role in coordinating DNA repair against replication-blocking lesions by providing a platform to recruit factors required for DNA repair and cell cycle control. Here, we identify human SDE2 as a new genome surveillance factor regulated by PCNA interaction. SDE2 contains an N-terminal ubiquitin-like (UBL) fold, which is cleaved at a diglycine motif via a PCNA-interacting peptide (PIP) box and deubiquitinating enzyme activity. The cleaved SDE2 is required for negatively regulating ultraviolet damage-inducible PCNA monoubiquitination and counteracting replication stress. The cleaved SDE2 products need to be degraded by the CRL4CDT2 ubiquitin E3 ligase in a cell cycle- and DNA damage-dependent manner, and failure to degrade SDE2 impairs S phase progression and cellular survival. Collectively, this study uncovers a new role for CRL4CDT2 in protecting genomic integrity against replication stress via regulated proteolysis of PCNA-associated SDE2 and provides insights into how an integrated UBL domain within linear polypeptide sequence controls protein stability and function.


Assuntos
Carcinogênese/genética , Reparo do DNA/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Antígeno Nuclear de Célula em Proliferação/genética , Ubiquitina-Proteína Ligases/genética , Quimiocina CXCL12/genética , Dano ao DNA/genética , Células HeLa , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estabilidade Proteica/efeitos da radiação , Proteólise/efeitos da radiação , Fase S/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética , Ubiquitinação/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA