Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomol Ther (Seoul) ; 31(1): 73-81, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35811306

RESUMO

Sirtuins (SIRTs) belong to the nicotinamide adenine dinucleotide (NAD+)-dependent class III histone deacetylase family. They are key regulators of cellular and physiological processes, such as cell survival, senescence, differentiation, DNA damage and stress response, cellular metabolism, and aging. SIRTs also influence carcinogenesis, making them potential targets for anticancer therapeutic strategies. In this study, we investigated the anticancer properties and underlying molecular mechanisms of a novel SIRT1 inhibitor, MHY2251, in human colorectal cancer (CRC) cells. MHY2251 reduced the viability of various human CRC cell lines, especially those with wild-type TP53. MHY2251 inhibited SIRT1 activity and SIRT1/2 protein expression, while promoting p53 acetylation, which is a target of SIRT1 in HCT116 cells. MHY2251 treatment triggered apoptosis in HCT116 cells. It increased the percentage of late apoptotic cells and the sub-G1 fraction (as detected by flow cytometric analysis) and induced DNA fragmentation. In addition, MHY2251 upregulated the expression of FasL and Fas, altered the ratio of Bax/Bcl-2, downregulated the levels of pro-caspase-8, -9, and -3 proteins, and induced subsequent poly(ADP-ribose) polymerase cleavage. The induction of apoptosis by MHY2251 was related to the activation of the caspase cascade, which was significantly attenuated by pre-treatment with Z-VAD-FMK, a pan-caspase inhibitor. Furthermore, MHY2251 stimulated the phosphorylation of c-Jun N-terminal kinase (JNK), and MHY2251-triggered apoptosis was blocked by pre-treatment with SP600125, a JNK inhibitor. This finding indicated the specific involvement of JNK in MHY2251-induced apoptosis. MHY2251 shows considerable potential as a therapeutic agent for targeting human CRC via the inhibition of SIRT1 and activation of JNK/p53 pathway.

2.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163511

RESUMO

Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the anticancer effects and underlying mechanism of MHY2245, a derivative of sirtinol, in HCT116 human colorectal cancer cells in vitro. Treatment with MHY2245 decreased SIRT1 activity and caused DNA damage, leading to the upregulation of p53 acetylation, and increased levels of p53, phosphorylation of H2A histone family member X, ataxia telangiectasia and Rad3-related kinase, checkpoint kinase 1 (Chk1), and Chk2. The level of the breast cancer type 1 susceptibility protein was also found to decrease. MHY2245 induced G2/M phase cell cycle arrest via the downregulation of cyclin B1, cell division cycle protein 2 (Cdc2), and Cdc25c. Further, MHY2245 induced HCT116 cell death via apoptosis, which was accompanied by internucleosomal DNA fragmentation, decreased B-cell lymphoma 2 (Bcl-2) levels, increased Bcl-2-asscociated X protein levels, cleavage of poly(ADP-ribose) polymerase, and activation of caspases -3, -8, and -9. Overall, MHY2245 induces cell cycle arrest, triggers apoptosis through caspase activation, and exhibits DNA damage response-associated anticancer effects.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Naftalenos/farmacologia , Sirtuínas/antagonistas & inibidores , Apoptose , Benzamidas/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Naftalenos/química , Naftóis/química
3.
J Prev Med Public Health ; 37(1): 59-71, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25363034

RESUMO

OBJECTIVE: This study aimed to measure the disability weights for the Korean Burden of Disease study, and to compare them with those adopted in the Australian study to examine the validity and describe the distinctive features. METHODS: The standardized valuation protocol was developed from the Global Burden of Disease (GBD) study and the Dutch Disability Weights study. Disability weights were measured for 123 diseases of the Korean version of Disease Classification by three panels of 10 medical doctors each. Then, overall distribution, correlation coefficients, difference by each disease, and mean of differences by disease group were analyzed for comparison of disability weights between the Korean and Australian studies. RESULTS: Korean disability weights ranged from 0.037 to 0.927. While the rank correlation coefficient was moderate to high (rs=0.68), Korean disability weights were higher than the corresponding Australian ones in 79.7% of the 118 diseases. Of these, war, leprosy, and most injuries showed the biggest differences. On the contrary, many infectious and parasitic diseases comprised the greater part of diseases of which Korean disability weights were lower. The mean of the differences was the highest in injuries of GBD disease groups, and in cardiovascular disease, injuries, and malignant neoplasm of the Korean disease category. CONCLUSIONS: Korean disability weights were found to be valid on the basis of overall distribution pattern and correlation, and are expected to be used as basic data for broadening the scope of burden of disease study. However, some distinctive features still remain to be explored in following studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA