Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(16): e2306188, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417122

RESUMO

Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.


Assuntos
Líquido Extracelular , Melanoma , Agulhas , Proteínas S100 , Neoplasias Cutâneas , Melanoma/diagnóstico , Melanoma/metabolismo , Melanoma/patologia , Animais , Proteínas S100/metabolismo , Líquido Extracelular/metabolismo , Camundongos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Modelos Animais de Doenças , Humanos , Microfluídica/métodos , Pele/metabolismo , Pele/patologia
2.
Talanta ; 269: 125399, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979506

RESUMO

Antisense oligonucleotide (ASO) is a powerful agent for gene therapy, designed to form complementary pairs with specific mRNA to inhibit gene expression. However, low specificity limits its potential. To overcome this challenge, we developed a Y-shape DNA nanostructure that enhances the specificity in ASO-based treatment by introducing a detection trigger. The design incorporates the phenotype-specific miR21 activation and the sequential release of Bcl2 ASO. As a result, our Y-shape DNA nanostructure downregulates >50 % Bcl2 mRNA expression and induces >60 % cell death in breast cancer cells. Meanwhile, this approach shows no obvious damage to the non-cancerous cells, indicating the therapeutic potential as a theranostics agent in precision medicine with the combination of biomarker sensing and treatment. Overall, our Y-shape DNA nanostructure serves as a promising strategy providing potential in customized conformation design with specific target sequences in gene therapy.


Assuntos
Nanoestruturas , Oligonucleotídeos Antissenso , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Medicina de Precisão , DNA , Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2 , RNA Mensageiro/genética , Fenótipo
3.
Biosens Bioelectron ; 220: 114859, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368142

RESUMO

Flap endonuclease 1 (FEN1) is an endonuclease that specially removes 5' single-stranded overhang of branched duplex DNA (5' flap). While FEN1 is essential in various DNA metabolism pathways for preventing the malignant transformation of cells, an unusual expression of FEN1 is often associated with tumor progression, making it a potential biomarker for cancer diagnosis and treatment. Here we report a multimodal detection of FEN1 activity based on CRISPR/Cas12a trans-cleavage of single-strand DNA oligonucleotides (ssDNA). A dumbbell DNA structure with a 5' flap was designed, which can be cleaved by the FEN1 and the dumbbell DNA is subsequently ligated by T4 DNA ligase. The resulting closed duplex DNA contains a specific protospacer adjacent motif (PAM) that activates trans-cleavage of ssDNA after binding to CRISPR/Cas12a-crRNA. The trans-cleavage is activated only once and is independent to length or sequence of the ssDNA, which allows efficient signal amplification and multimodal signals such as fluorescence or cleaved connection between magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) that alters solution turbidity after magnetic separation. In addition, by loading the particle solution into a microfluidic chip, unconnected PMPs escaping from a magnetic separator are amassed at the particle dam, enabling a visible PMP accumulation length proportional to the FEN1 activity. This multimodal detection is selective to FEN1 and achieves a low limit of detection (LOD) with only 40 min of reaction time. Applying to cell lysates, higher FEN1 activity was detected in breast cancer cells, suggesting a great potential for cancer diagnosis.


Assuntos
Técnicas Biossensoriais , Endonucleases Flap , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Oligonucleotídeos , Sistemas CRISPR-Cas/genética , DNA de Cadeia Simples , DNA/química
4.
Adv Biosyst ; 4(10): e2000161, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32864891

RESUMO

Cell chirality is observed with diverse forms and coordinates various left-right (LR) asymmetry in tissue morphogenesis. To give rise to such diversity, cell chirality may be coupled with cell differentiation. Here, using micropatterned human mesenchymal stem cells (hMSCs), an early committed clockwise (CW) cell chirality that can itself upregulate the adipogenic differentiation is reported. hMSC chirality enables a positively tilted chiral orientation on micropatterned stripes. When cultured as single cells on circular micropatterns, an anticlockwise (ACW)-biased nucleus rotation and swirling pattern of actin filament are observed. Interestingly, with adipogenic induction for 3-6 days, such chirality is reversed to negative chiral orientation and CW-biased rotation, which is earlier than the maturation of other differentiation markers, and consistently expressed in terminally differentiated adipocytes. Using latrunculin A (LatA), cytochalasin D (CD), and nocodazole (Noco) that forces a CW-biased actin filament and nucleus rotation resembling the early differentiated chirality upon adipogenic induction, an upregulation of adipogenic differentiation is found. The result demonstrates that the early differentiated chirality may serve as a mechanical precursor to engage the lineage commitment, suggesting a feedback mechanism of chiral actin in regulating cell differentiation and LR morphogenesis.


Assuntos
Adipócitos/citologia , Adipogenia/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/citologia , Morfogênese/fisiologia , Citoesqueleto de Actina/metabolismo , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA