Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Poult Sci ; 102(6): 102660, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37043955

RESUMO

This study was conducted to determine the effects of dietary yeast cell wall (YCW) on growth performance, intestinal health, and immune responses of broiler chickens. In a randomized completely block design (block: initial body weight), a total of 800 broilers (Ross 308; 45.18 ± 3.13 g of initial body weight) were assigned to 2 dietary treatments (40 birds/pen; 10 replicates/treatment) and fed for 5 wk: 1) a basal broiler diet based on corn-soybean meal (CON) and 2) CON + 0.05% dietary YCW. Growth performance was measured at intervals in 3 phase feed program. On the final day of the study, one bird per pen was randomly selected and euthanized for sample collection. Broilers fed YCW had decreased (P < 0.05) feed conversion ratio during the grower phase compared with those fed CON. The YCW increased (P < 0.05) villus height to crypt depth ratio in the duodenum, jejunum, and ileum compared with the CON. In addition, the YCW tended to higher (P < 0.10) number of goblet cells in the duodenum than in the CON. Broilers fed YCW had increased (P < 0.05) serum TGF- ß1, ileal gene expression of the claudin family, and relative abundance of Lactobacillus, Prevotella, and Enterococcus compared with the CON, but decreased serum TNF-α (P < 0.05), IL-1ß (P < 0.05), and IL-6 (P < 0.10), ileal gene expression of IL-6 (P < 0.05), and relative abundance of Clostridium (P < 0.05). The present study demonstrated that the addition of dietary YCW in broiler diets enhanced the intestinal health of broiler chickens and may be associated with modulated intestinal morphology and integrity by upregulating tight junction-related protein gene expression and modifying the ileal microbiota. In addition, dietary YCW modulated immune responses and inflammatory cytokine gene expression in the ileum.


Assuntos
Galinhas , Interleucina-6 , Animais , Galinhas/fisiologia , Dieta/veterinária , Leveduras , Peso Corporal , Imunidade , Parede Celular , Suplementos Nutricionais , Ração Animal/análise
2.
J Anim Sci ; 100(5)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35404458

RESUMO

The present study investigated the effects of live yeast cultures (LYC) on growth performance, gut health indicators, and immune responses in broiler chickens. A total of 720 mixed-sex broilers (40 birds/pen; 9 replicates/treatment) were randomly allocated to two dietary treatments: (1) a basal diet based on corn-soybean meal (CON) and (2) CON with 1 g/kg LYC. At 35 d of age, one bird per replicate pen was chosen for biopsy. LYC group tended (P < 0.10) to increase average daily gain during the grower phase compared with CON group. Broilers fed LYC diet had increased (P = 0.046) duodenal villus height and area but reduced (P = 0.003) duodenal crypt depth compared with those fed CON diet. Birds fed LYC diet presented alleviated (P < 0.05) serum TNF-α, IL-1ß, and IL-6 levels compared with those fed CON diet. Further, birds fed LYC diet exhibited upregulated (P < 0.05) ileal tight junction-related proteins and pro-inflammatory cytokines in the ileal tissue compared with those fed CON diet. Inverse Simpson's diversity (P = 0.038) revealed that birds fed CON diet had a more diverse microbiota community in the ileal digesta, compared with those fed LYC diet, while no significant difference between the treatments on Chao1 and Shannon's indices was observed. Based on the weighted UniFrac distance, the PCoA showed that microbiota in the ileal digesta of the LYC group was different from that of the CON group. LYC group increased the abundance of the phyla Firmicutes and genera Lactobacillus, Prevotella, and Enterococcus compared with CON group. The present study demonstrated that supplemental LYC as a feed additive provide supportive effects on enhancing gut functionality by improving the upper intestinal morphology and gut integrity, and modulating the immune system and microbiota communities of birds.


Live yeast culture (LYC) is composed of Saccharomyces cerevisiae and its metabolites such as mannan-oligosaccharides, peptides, nucleotides, vitamins and unknown growth factors. The supplementation of LYC is expected to exert health benefits in animals; however, the responses of broiler chickens to supplemental LYC is not fully explored. Thus, the present study evaluated the effects of LYC supplementation on growth performance, immune responses and intestinal health in broiler chickens. Based on the results from the present study, supplementation of LYC to a corn-based diet did not affect growth performance. Nonetheless, supplemental LYC improved intestinal morphology, upregulated tight junction-related protein genes and altered ileal microbiota diversity, suggesting its health benefits in improving gut health. In addition, supplemental LYC modulated serum immune responses and ileal cytokine genes expression, presenting its immunomodulatory potential.


Assuntos
Galinhas , Microbiota , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Imunidade , Saccharomyces cerevisiae , Proteínas de Junções Íntimas/metabolismo
3.
J Anim Sci Technol ; 63(5): 1076-1085, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34796348

RESUMO

The study was conducted to evaluate the effects of spray-dried plasma (SDP) supplementation during late gestation and lactation on productive performance and immune responses of sows and their litters. Twelve sows (227.78 ± 2.16 kg average body weight; 2.0 average parity) were randomly allotted to two dietary treatments: a basal diet (CON) and the basal diet supplemented with 1% SDP. Sows were fed experimental diets from d 30 before farrowing to weaning of their piglets. Blood samples were collected from sows on d 1, 3, and 7 of lactation and from two randomly selected nursing pigs per litter on d 3 and 7 after birth, and d 1, 3, and 7 after weaning. Productive performance and immune responses of sows and their piglets were measured. There was a trend of less body weight loss in sows supplemented with SDP (p < 0.10) during the lactation period and a trend of greater (p < 0.10) average daily gain in SDP piglets compared to those in the CON group. Sows in the SDP group tended to have lower (p < 0.10) serum concentrations of tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), and cortisol on d 3 and lower serum concentration of TNF-α on d 7 compared with sows in CON group. In comparison with CON piglets, piglets from SDP sows tended to have lower (p < 0.10) serum concentrations of TNF-α, TGF-ß1, and cortisol on d 7 after birth, lower (p < 0.10) serum TNF-α and C-reactive protein on d 3 and 7 after weaning, and greater (p < 0.10) average daily gain after weaning. Moreover, weaned pigs from sows fed SDP had significantly lower (p < 0.05) serum concentrations of cortisol and TGF-ß1 on d 3 and 7 postweaning, respectively, than CON piglets. In conclusion, SDP supplementation in sow diets from late gestation to weaning improved the productive performance of sows and their offspring; the beneficial effects of SDP may be mediated in part through modulation of immune responses of both sows and piglets.

4.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558617

RESUMO

The purpose of the current study was to assess the effects of substituting corn with ground brown rice on growth performance, immune status, and gut microbiota in weanling pigs. Seventy-two weanling pigs (28 d old with 6.78 ± 0.94 kg body weight [BW]) were randomly allotted to two dietary treatments with six pens and six pigs (three barrows and gilts) per pen within a randomized complete block design. The control pigs were fed a typical diet for weanling pigs based on corn and soybean meal diet (control diet: CON), and the other pigs were fed a formulated diet with 100% replacement of corn with ground brown rice for 35d (treatment diet: GBR). Growth performance, immune status, and gut microbiota of weanling pigs were measured. The substitution of corn with GBR did not affect growth performance or diarrhea frequency. Additionally, there were no differences in white blood cell number, hematocrit, cortisol, C-reactive protein, and serum tumor necrosis factor-alpha levels between pigs fed CON or GBR for the first 2 wk after weaning. However, weanling pigs fed GBR had lower (P < 0.05) serum transforming growth factor-beta 1 level than those fed CON. Furthermore, weanling pigs fed GBR had increased (P < 0.05) relative abundance of phylum Firmicutes and genus Lactobacillus and Streptococcus and decreased (P < 0.05) relative abundance of phylum Bacteroidetes and genus Clostridium and Prevotella in the gut microbiota compared with those fed CON. In conclusion, there was no significant difference in growth performance when corn was replaced with ground brown rice in diets for weanling pigs. Furthermore, the substitution of corn with ground brown rice in weaning diet modulated immune status and gut microbiota of pigs by increasing beneficial microbial communities and reducing harmful microbial communities. Overall, ground brown rice-based diet is a potential alternative to corn-based diet without negative effects on growth performance, immune status, and gut microbiota changes of weanling pigs.


Assuntos
Ração Animal , Oryza , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Distribuição Aleatória , Glycine max , Sus scrofa , Suínos , Desmame
5.
J Anim Sci Technol ; 63(3): 520-530, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34189502

RESUMO

This experiment was performed to verify whether dietary heat-killed Lactobacillus rhamnosus (LR) improves growth performance and modulates immune responses of weaned pigs. Ninety-six weaned pigs ([Landrace × Yorkshire] × Duroc; 6.95 ± 0.25 kg body weight [BW]; 28 d old) were randomly allocated to four treatments: 1) a basal diet without heat-killed LR (CON), 2) T1 (CON with 0.1% heat-killed LR), 3) T2 (CON with 0.2% heat-killed LR), and 4) T3 (CON with 0.4% heat-killed LR). Each treatment had six pens with four pigs (6 replicates per treatment) in a randomized completely block design. The heat-killed LR used in this study contained 1 × 109 FU/g of LR in a commercial product. Pigs were fed each treatment for four weeks using a two-phase feeding program to measure growth performance and frequency of diarrhea. During the last week of this study, all diets contained 0.2% chromic oxide as an indigestible marker. Fecal sampling was performed through rectal palpation for the consecutive three days after the four adaptation days to measure apparent total tract digestibility (ATTD) of dry matter, crude protein, and gross energy (GE). Blood sampling was also performed on day 1, 3, 7, and 14 after weaning to measure immune responses such as serum tumor necrosis factor-α (TNF-α), transforming growth factor-ß1 (TGF-ß1), C-reactive protein (CRP), and cortisol. The heat-killed LR increased (p < 0.05) growth rate, feed efficiency, and ATTD of GE for overall experimental period compared with CON, but reduced (p < 0.05) post-weaning diarrhea. In addition, pigs fed diets contained heat-killed had lower concentrations of serum TNF-α (d 7; p < 0.05), TGF-ß1 (d 7; p < 0.10), and cortisol (d 3 and 7; p < 0.05) than pigs fed CON. In conclusion, dietary heat-killed LR improved growth rate, modified immune responses of weaned pigs, and alleviated post-weaning diarrhea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA