Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511593

RESUMO

The data on tumor molecular profiling of European patients with prostate cancer is limited. Our aim was to evaluate the prevalence and prognostic and predictive values of gene alterations in unselected patients with prostate cancer. The presence of gene alterations was assessed in patients with histologically confirmed prostate cancer using the ForeSENTIA® Prostate panel (Medicover Genetics), targeting 36 clinically relevant genes and microsatellite instability testing. The primary endpoint was the prevalence of gene alterations in homologous recombination repair (HRR) genes. Overall, 196 patients with prostate cancer were evaluated (median age 72.2 years, metastatic disease in 141 (71.9%) patients). Gene alterations were identified in 120 (61%) patients, while alteration in HRR genes were identified in 34 (17.3%) patients. The most commonly mutated HRR genes were ATM (17, 8.7%), BRCA2 (9, 4.6%) and BRCA1 (4, 2%). The presence of HRR gene alterations was not associated with advanced stage (p = 0.21), age at diagnosis (p = 0.28), Gleason score (p = 0.17) or overall survival (HR 0.72; 95% CI: 0.41-1.26; p = 0.251). We identified clinically relevant somatic gene alterations in European patients with prostate cancer. These molecular alterations have prognostic significance and therapeutic implications and/or may trigger genetic testing in selected patients. In the era of precision medicine, prospective research on the predictive role of these alterations for innovative treatments or their combinations is warranted.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Idoso , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Testes Genéticos
2.
Oncol Lett ; 25(1): 38, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36589665

RESUMO

Gliomas are the most common malignant primary brain tumors characterized by poor prognosis. The genotyping of tumors using next generation sequencing (NGS) platforms enables the identification of genetic alterations that constitute diagnostic, prognostic and predictive biomarkers. The present study investigated the molecular profile of 32 tumor samples from 32 patients with high-grade gliomas by implementing a broad 80-gene targeted NGS panel while reporting their clinicopathological characteristics and outcomes. Subsequently, 14 of 32 tumor specimens were also genotyped using a 55-gene NGS panel to validate the diagnostic accuracy and clinical utility of the extended panel. The median follow-up was 19.2 months. In total, 129 genetic alterations including 33 structural variants were identified in 38 distinct genes. Among 96 variants (single nucleotide variants and insertions and deletions), 38 were pathogenic and 58 variants of unknown clinical significance. TP53 was the most frequently mutated gene, followed by PTEN and IDH1 genes. Glioma patients with IDH1 mutant tumors were younger and had significantly longer overall survival compared to patients with wild-type IDH1 tumors. Similarly, tumors with TP53 mutations were more likely observed in younger patients with glioma. Subsequently, a comparison of mutational profiles of samples analyzed by both panels was also performed. Implementation of the comprehensive pan-cancer and the MOL panels resulted in the identification of 37 and 15 variants, respectively. Of those, 13 were common. Comprehensive pan-cancer panel identified 24 additional variants, 22 of which were located in regions that were not targeted by the MOL panel. By contrast, the MOL panel identified two additional variants. Overall, the present study demonstrated that using an extended tumor profile assay instead of a glioma-specific tumor profile panel identified additional genetic changes that may be taken into consideration as potential therapeutic targets for glioma diagnosis and molecular classification.

3.
Cancers (Basel) ; 13(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429865

RESUMO

Our aim was to determine the prevalence, prognostic and predictive role of germline pathogenic/likely pathogenic variants (P/LPVs) in cancer predisposing genes in patients with pancreatic ductal adenocarcinoma (PDAC). Germline testing of 62 cancer susceptibility genes was performed on unselected patients diagnosed from 02/2003 to 01/2020 with PDAC, treated at Hellenic Cooperative Oncology Group (HeCOG)-affiliated Centers. The main endpoints were prevalence of P/LPVs and overall survival (OS). P/LPVs in PDAC-associated and homologous recombination repair (HRR) genes were identified in 22 (4.0%) and 42 (7.7%) of 549 patients, respectively. P/LPVs were identified in 16 genes, including ATM (11, 2.0%) and BRCA2 (6, 1.1%), while 19 patients (3.5%) were heterozygotes for MUTYH P/LPVs and 9 (1.6%) carried the low-risk allele, CHEK2 p.(Ile157Thr). Patients carrying P/LPVs had improved OS compared to non-carriers (22.6 vs. 13.9 months, p = 0.006). In multivariate analysis, there was a trend for improved OS in P/LPV carriers (p = 0.063). The interaction term between platinum exposure and mutational status of HRR genes was not significant (p-value = 0.35). A significant proportion of patients with PDAC carries clinically relevant germline P/LPVs, irrespectively of age, family history or disease stage. The predictive role of these P/LPVs has yet to be defined. ClinicalTrials.gov Identifier: NCT03982446.

4.
Genet Res (Camb) ; 98: e15, 2016 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-27834155

RESUMO

DNA methylation is an epigenetic marker that has been shown to vary significantly across different tissues. Taking advantage of the methylation differences between placenta-derived cell-free DNA and maternal blood, several groups employed different approaches for the discovery of fetal-specific biomarkers. The aim of this study was to analyse whole-genome fetal and maternal methylomes in order to identify and confirm the presence of differentially methylated regions (DMRs). We have initially utilized methylated DNA immunoprecipitation (MeDIP) and next-generation sequencing (NGS) to identify genome-wide DMRs between chorionic villus sampling (CVS) and female non-pregnant plasma (PL) and peripheral blood (WBF) samples. Next, using specific criteria, 331 fetal-specific DMRs were selected and confirmed in eight CVS, eight WBF and eight PL samples by combining MeDIP and in-solution targeted enrichment followed by NGS. Results showed higher enrichment in CVS samples as compared to both WBF and PL samples, confirming the distinct methylation levels between fetal and maternal DNA for the selected DMRs. We have successfully implemented a novel approach for the discovery and confirmation of a significant number of fetal-specific DMRs by combining for the first time MeDIP and in-solution targeted enrichment followed by NGS. The implementation of this double-enrichment approach is highly efficient and enables the detailed analysis of multiple DMRs by targeted NGS. Also, this is, to our knowledge, the first reported application of MeDIP on plasma samples, which leverages the implementation of our enrichment methodology in the detection of fetal abnormalities in maternal plasma.


Assuntos
Biomarcadores/análise , Metilação de DNA , DNA/genética , Doenças Fetais/diagnóstico , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Complicações na Gravidez/diagnóstico , Amostra da Vilosidade Coriônica , DNA/sangue , Epigênese Genética , Feminino , Doenças Fetais/sangue , Doenças Fetais/genética , Feto/metabolismo , Humanos , Imunoprecipitação , Testes para Triagem do Soro Materno , Placenta/metabolismo , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Primeiro Trimestre da Gravidez
5.
Genes (Basel) ; 5(2): 310-29, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24722507

RESUMO

Epigenetic modifications have proven to play a significant role in cancer development, as well as fetal development. Taking advantage of the knowledge acquired during the last decade, great interest has been shown worldwide in deciphering the fetal epigenome towards the development of methylation-based non-invasive prenatal tests (NIPT). In this review, we highlight the different approaches implemented, such as sodium bisulfite conversion, restriction enzyme digestion and methylated DNA immunoprecipitation, for the identification of differentially methylated regions (DMRs) between free fetal DNA found in maternal blood and DNA from maternal blood cells. Furthermore, we evaluate the use of selected DMRs identified towards the development of NIPT for fetal chromosomal aneuploidies. In addition, we perform a comparison analysis, evaluate the performance of each assay and provide a comprehensive discussion on the potential use of different methylation-based technologies in retrieving the fetal methylome, with the aim of further expanding the development of NIPT assays.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA