Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biofabrication ; 15(4)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37595608

RESUMO

Most vascular surgical repair procedures, such as vessel anastomoses, requires using suture materials that are mechanically efficient and accepted by the patient's body. These materials are essentially composed of synthetic polymers, such as polypropylene (ProleneTM) or polyglactin (VicrylTM). However, once implanted in patients, they are recognized as foreign bodies, and the patient's immune system will degrade, encapsulate, or even expel them. In this study, we developed innovative biological sutures for cardiovascular surgical repairs using Cell-Assembled extracellular Matrix (CAM)-based ribbons. After a mechanical characterization of the CAM-based ribbons, sutures were made with hydrated or twisted/dried ribbons with an initial width of 2 or 3 mm. These biological sutures were mechanically characterized and used to anastomoseex vivoanimal aortas. Data showed that our biological sutures display lower permeability and higher burst resistance than standard ProleneTMsuture material.In vivocarotid anastomoses realized in sheep demonstrated that our biological sutures are compatible with standard vascular surgery techniques. Echography confirmed the absence of thrombus and perfect homeostasis with no blood leakage was obtained within the first 10 min after closing the anastomosis. Finally, our findings confirmed the effectiveness and clinical relevance of these innovative biological sutures.


Assuntos
Polipropilenos , Suturas , Animais , Ovinos , Aorta , Relevância Clínica , Matriz Extracelular
2.
J Biomed Mater Res A ; 108(10): 2044-2056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32319212

RESUMO

Thanks to its biological properties, the human amniotic membrane (HAM) can be used as a barrier membrane for guided bone regeneration (GBR). However, no study has assessed the influence of the preservation method of HAM for this application. This study aimed to establish the most suitable preservation method of HAM for GBR. Fresh (F), cryopreserved (C) lyophilized (L), and decellularized and lyophilized (DL) HAM were compared. The impact of preservation methods on collagen and glycosaminoglycans (GAG) content was evaluated using Masson's trichrome and alcian blue staining. Their suture retention strengths were assessed. In vitro, the osteogenic potential of human bone marrow mesenchymal stromal cells (hBMSCs) cultured on the four HAMs was evaluated using alkaline phosphatase staining and alizarin red quantification assay. In vivo, the effectiveness of fresh and preserved HAMs for GBR was assessed in a mice diaphyseal bone defect after 1 week or 1 month healing. Micro-CT and histomorphometric analysis were performed. The major structural components of HAM (collagen and GAG) were preserved whatever the preservation method used. The tearing strength of DL-HAM was significantly higher. In vitro, hBMSCs seeded on DL-HAM displayed a stronger ALP staining, and alizarin red staining quantification was significantly higher at Day 14. In vivo, L-HAM and DL-HAM significantly enhanced early bone regeneration. One month after the surgery, only DL-HAM slightly promoted bone regeneration. Several preserving methods of HAM have been studied for bone regeneration. Here, we have demonstrated that DL-HAM achieved the most promising results for GBR.


Assuntos
Âmnio/química , Regeneração Óssea , Células-Tronco Mesenquimais/citologia , Alicerces Teciduais/química , Animais , Células Cultivadas , Criopreservação , Humanos , Camundongos , Osteogênese , Engenharia Tecidual/métodos
3.
J Biomed Mater Res A ; 106(4): 887-894, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29105943

RESUMO

Autografts remain the gold standard for orthopedic transplantations. However, to overcome its limitations, bone tissue engineering proposes new strategies. This includes the development of new biomaterials such as synthetic polymers, to serve as scaffold for tissue production. The objective of this present study was to produce poly(lactic) acid (PLA) scaffolds of different pore size using fused deposition modeling (FDM) technique and to evaluate their physicochemical and biological properties. Structural, chemical, mechanical, and biological characterizations were performed. We successfully fabricated scaffolds of three different pore sizes. However, the pore dimensions were slightly smaller than expected. We found that the 3D printing process induced decreases in both, PLA molecular weight and degradation temperatures, but did not change the semicrystalline structure of the polymer. We did not observe any effect of pore size on the mechanical properties of produced scaffolds. After the sterilization by γ irradiation, scaffolds did not exhibit any cytotoxicity towards human bone marrow stromal cells (HBMSC). Finally, after three and seven days of culture, HBMSC showed high viability and homogenous distribution irrespective of pore size. Thus, these results suggest that FDM technology is a fast and reproducible technique that can be used to fabricate tridimensional custom-made scaffolds for tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 887-894, 2018.


Assuntos
Osso e Ossos/fisiologia , Poliésteres/farmacologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osso e Ossos/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Temperatura
4.
J Vasc Surg ; 60(5): 1353-1357, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24103406

RESUMO

An arteriovenous fistula is the current gold standard for chronic hemodialysis access. Tunneled catheters or synthetic grafts have poorer outcomes and much higher risks of infection. This report presents the first clinical use of a completely biological, allogeneic, nonliving, and human tissue-engineered vascular graft. Tissue-engineered vascular grafts built from allogeneic fibroblasts were implanted as shunts in three hemodialysis patients. The tissue-engineered vascular graft was stored for 9 months, without loss of mechanical strength. Implanted grafts showed no signs of degradation or dilation, with time points up to 11 months. Results of panel-reactive antibody and cross-reactivity tests showed no evidence of immune responses.


Assuntos
Derivação Arteriovenosa Cirúrgica/instrumentação , Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Fibroblastos/transplante , Diálise Renal , Engenharia Tecidual/métodos , Idoso , Idoso de 80 Anos ou mais , Derivação Arteriovenosa Cirúrgica/efeitos adversos , Implante de Prótese Vascular/efeitos adversos , Células Cultivadas , Feminino , Fibroblastos/imunologia , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Desenho de Prótese , Fatores de Tempo , Transplante Homólogo , Resultado do Tratamento , Ultrassonografia Doppler
5.
J Vasc Access ; 12(1): 67-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21360466

RESUMO

Previously we reported on the mid- to long-term follow-up in the first clinical trial to use a completely autologous tissue-engineered graft in the high pressure circulation. In these early studies, living grafts were built from autologous fibroblasts and endothelial cells obtained from small skin and vein biopsies. The graft was assembled using a technique called tissue-engineering by self-assembly (TESA), where robust conduits were grown without support from exogenous biomaterials or synthetic scaffolding. One limitation with this earlier work was the long lead times required to build the completely autologous vascular graft. Here we report the first implant of a frozen, devitalized, completely autologous Lifeline™ vascular graft. In a departure from previous studies, the entire fibroblast layer, which provides the mechanical backbone of the graft, was air-dried then stored at -80°C until shortly before implant. Five days prior to implant, the devitalized conduit was rehydrated, and its lumen was seeded with living autologous endothelial cells to provide an antithrombogenic lining. The graft was implanted as an arteriovenous shunt between the brachial artery and the axillary vein in a patient who was dependent upon a semipermanent dialysis catheter placed in the femoral vein. Eight weeks postoperatively, the graft functions without complication. This strategy of preemptive skin and vein biopsy and cold-preserving autologous tissue allows the immediate availability of an autologous arteriovenous fistula, and is an important step forward in our strategy to provide allogeneic tissue-engineered grafts available "off-the-shelf".


Assuntos
Derivação Arteriovenosa Cirúrgica , Veia Axilar/cirurgia , Bioprótese , Implante de Prótese Vascular/instrumentação , Prótese Vascular , Artéria Braquial/cirurgia , Criopreservação , Hemodiluição , Falência Renal Crônica/terapia , Engenharia Tecidual , Idoso , Veia Axilar/diagnóstico por imagem , Artéria Braquial/diagnóstico por imagem , Humanos , Masculino , Desenho de Prótese , Fatores de Tempo , Tomografia Computadorizada por Raios X , Transplante Autólogo , Resultado do Tratamento , Ultrassonografia Doppler
6.
Lancet ; 373(9673): 1440-6, 2009 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-19394535

RESUMO

BACKGROUND: Application of a tissue-engineered vascular graft for small-diameter vascular reconstruction has been a long awaited and much anticipated advance for vascular surgery. We report results after a minimum of 6 months of follow-up for the first ten patients implanted with a completely biological and autologous tissue-engineered vascular graft. METHODS: Ten patients with end-stage renal disease who had been receiving haemodialysis through an access graft that had a high probability of failure, and had had at least one previous access failure, were enrolled from centres in Argentina and Poland between September, 2004, and April, 2007. Completely autologous tissue-engineered vascular grafts were grown in culture supplemented with bovine serum, implanted as arteriovenous shunts, and assessed for both mechanical stability during the safety phase (0-3 months) and effectiveness after haemodialysis was started. FINDINGS: Three grafts failed within the safety phase, which is consistent with failure rates expected for this high-risk patient population. One patient was withdrawn from the study because of severe gastrointestinal bleeding shortly before implantation, and another died of unrelated causes during the safety period with a patent graft. The remaining five patients had grafts functioning for haemodialysis 6-20 months after implantation, and a total of 68 patient-months of patency. In these five patients, only one intervention (surgical correction) was needed to maintain secondary patency. Overall, primary patency was maintained in seven (78%) of the remaining nine patients 1 month after implantation and five (60%) of the remaining eight patients 6 months after implantation. INTERPRETATION: Our proportion of primary patency in this high-risk cohort approaches Dialysis Outcomes Quality Initiative objectives (76% of patients 3 months after implantation) for arteriovenous fistulas, averaged across all patient populations.


Assuntos
Derivação Arteriovenosa Cirúrgica , Bioprótese , Prótese Vascular , Falência Renal Crônica/terapia , Diálise Renal , Engenharia Tecidual/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento , Grau de Desobstrução Vascular
8.
Nat Clin Pract Cardiovasc Med ; 4(7): 389-95, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589429

RESUMO

There is a considerable clinical need for alternatives to the autologous vein and artery tissues used for vascular reconstructive surgeries such as CABG, lower limb bypass, arteriovenous shunts and repair of congenital defects to the pulmonary outflow tract. So far, synthetic materials have not matched the efficacy of native tissues, particularly in small diameter applications. The development of cardiovascular tissue engineering introduced the possibility of a living, biological graft that might mimic the functional properties of native vessels. While academic research in the field of tissue engineering in general has been active, as yet there has been no clear example of clinical and commercial success. The recent transition of cell-based therapies from experimental to clinical use has, however, reinvigorated the field of cardiovascular tissue engineering. Here, we discuss the most promising approaches specific to tissue-engineered blood vessels and briefly introduce our recent clinical results. The unique regulatory, reimbursement and production challenges facing personalized medicine are also discussed.


Assuntos
Bioprótese , Prótese Vascular , Transferência de Tecnologia , Engenharia Tecidual , Bioprótese/economia , Bioprótese/história , Prótese Vascular/economia , Prótese Vascular/história , Ponte de Artéria Coronária , Aprovação de Equipamentos , História do Século XX , Humanos , Engenharia Tecidual/história
9.
Nat Med ; 12(3): 361-5, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16491087

RESUMO

There is a crucial need for alternatives to native vein or artery for vascular surgery. The clinical efficacy of synthetic, allogeneic or xenogeneic vessels has been limited by thrombosis, rejection, chronic inflammation and poor mechanical properties. Using adult human fibroblasts extracted from skin biopsies harvested from individuals with advanced cardiovascular disease, we constructed tissue-engineered blood vessels (TEBVs) that serve as arterial bypass grafts in long-term animal models. These TEBVs have mechanical properties similar to human blood vessels, without relying upon synthetic or exogenous scaffolding. The TEBVs are antithrombogenic and mechanically stable for 8 months in vivo. Histological analysis showed complete tissue integration and formation of vasa vasorum. The endothelium was confluent and positive for von Willebrand factor. A smooth muscle-specific alpha-actin-positive cell population developed within the TEBV, suggesting regeneration of a vascular media. Electron microscopy showed an endothelial basement membrane, elastogenesis and a complex collagen network. These results indicate that a completely biological and clinically relevant TEBV can be assembled exclusively from an individual's own cells.


Assuntos
Artérias/crescimento & desenvolvimento , Prótese Vascular , Vasos Sanguíneos/citologia , Vasos Sanguíneos/crescimento & desenvolvimento , Engenharia Tecidual , Adulto , Animais , Implante de Prótese Vascular , Vasos Sanguíneos/transplante , Células Cultivadas , Cães , Humanos , Primatas , Ratos , Ratos Nus , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA