Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Rep ; 72(2): 456-464, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32048262

RESUMO

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease of the elderly. Current therapies are only symptomatic, and have no disease-modifying effect. Therefore, disease progresses continuously over time, presenting with both motor and non-motor features. The precise molecular basis for PD is still elusive, but the aggregation of the protein alpha-synuclein (α-syn) is a key pathological hallmark of the disease and is, therefore, a major focus of current research. Considering the intrinsic properties of cell-penetrating peptides (CPPs) for mediating drug delivery of neurotherapeutics across the blood brain barrier (BBB), these might open novel opportunities for the development of new solutions for the treatment of brain-related aspects of PD and other neurodegenerative disorders. METHODS: Here, we synthesized solid-phase CPPs using an amphipathic model peptide (MAP) conjugated with the drug Rasagiline (RAS), which we named RAS-MAP, and evaluated its effect on α-syn inclusion formation in a human cell-based model of synucleinopathy. RESULTS: We found that treatment with RAS-MAP at low concentrations (1-3 µM) reduced α-syn aggregation in cells. CONCLUSIONS: For the first time, we report that conjugation of a current drug used in the therapy of PD with CPP reduces α-syn aggregation, which might prove beneficial in PD and other synucleinopathies.


Assuntos
Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Indanos/farmacologia , Fármacos Neuroprotetores/farmacologia , Agregação Patológica de Proteínas/prevenção & controle , alfa-Sinucleína/metabolismo , Barreira Hematoencefálica/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Humanos , Indanos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Técnicas de Síntese em Fase Sólida
2.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140298, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676453

RESUMO

The misfolding and aggregation of alpha-synuclein (aSyn) are thought to be central events in synucleinopathies. The physiological function of aSyn has been related to vesicle binding and trafficking, but the precise molecular mechanisms leading to aSyn pathogenicity are still obscure. In cell models, aSyn does not readily aggregate, even upon overexpression. Therefore, cellular models that enable the study of aSyn aggregation are essential tools for our understanding of the molecular mechanisms that govern such processes. Here, we investigated the structural features of SynT, an artificial variant of aSyn that has been widely used as a model of aggregation in mammalian cell systems, since it is more prone to aggregation than aSyn. Using Nuclear Magnetic Resonance (NMR) spectroscopy we performed a detailed structural characterization of SynT through a systematic comparison with normal, unmodified aSyn. Interestingly, we found that the conformations adopted by SynT resemble those described for the unmodified protein, demonstrating the usefulness of SynT as a model for aSyn aggregation. However, subtle differences were observed at the N-terminal region involving transient intra and/or intermolecular interactions that are known to regulate aSyn aggregation. Importantly, our results indicate that disturbances in the N-terminal region of SynT, and the consequent decrease in membrane binding of the modified protein, might contribute to the observed aggregation behavior of aSyn, and validate the use of SynT, one of the few models of aSyn aggregation in cultured cells.


Assuntos
Sinucleinopatias , alfa-Sinucleína/química , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Microscopia Eletrônica de Transmissão , Agregação Patológica de Proteínas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestrutura
3.
Cell Mol Neurobiol ; 38(8): 1539-1550, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30288631

RESUMO

In Parkinson's disease and other Lewy body disorders, the propagation of pathology has been accredited to the spreading of extracellular α-synuclein (α-syn). Although the pathogenic mechanisms are not fully understood, cell-to-cell transfer of α-syn via exosomes and other extracellular vesicles (EVs) has been reported. Here, we investigated whether altered molecular properties of α-syn can influence the distribution and secretion of α-syn in human neuroblastoma cells. Different α-syn variants, including α-syn:hemi-Venus and disease-causing mutants, were overexpressed and EVs were isolated from the conditioned medium. Of the secreted α-syn, 0.1-2% was associated with vesicles. The major part of EV α-syn was attached to the outer membrane of vesicles, whereas a smaller fraction was found in their lumen. For α-syn expressed with N-terminal hemi-Venus, the relative levels associated with EVs were higher than for WT α-syn. Moreover, such EV-associated α-syn:hemi-Venus species were internalized in recipient cells to a higher degree than the corresponding free-floating forms. Among the disease-causing mutants, A53T α-syn displayed an increased association with EVs. Taken together, our data suggest that α-syn species with presumably lost physiological functions or altered aggregation properties may shift the cellular processing towards vesicular secretion. Our findings thus lend further support to the tenet that EVs can mediate spreading of harmful α-syn species and thereby contribute to the pathology in α-synucleinopathies.


Assuntos
Vesículas Extracelulares/metabolismo , alfa-Sinucleína/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Exossomos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Proteínas tau/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(41): 10481-10486, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30249646

RESUMO

Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, a process that current therapeutic approaches cannot prevent. In PD, the typical pathological hallmark is the accumulation of intracellular protein inclusions, known as Lewy bodies and Lewy neurites, which are mainly composed of α-synuclein. Here, we exploited a high-throughput screening methodology to identify a small molecule (SynuClean-D) able to inhibit α-synuclein aggregation. SynuClean-D significantly reduces the in vitro aggregation of wild-type α-synuclein and the familiar A30P and H50Q variants in a substoichiometric molar ratio. This compound prevents fibril propagation in protein-misfolding cyclic amplification assays and decreases the number of α-synuclein inclusions in human neuroglioma cells. Computational analysis suggests that SynuClean-D can bind to cavities in mature α-synuclein fibrils and, indeed, it displays a strong fibril disaggregation activity. The treatment with SynuClean-D of two PD Caenorhabditis elegans models, expressing α-synuclein either in muscle or in dopaminergic neurons, significantly reduces the toxicity exerted by α-synuclein. SynuClean-D-treated worms show decreased α-synuclein aggregation in muscle and a concomitant motility recovery. More importantly, this compound is able to rescue dopaminergic neurons from α-synuclein-induced degeneration. Overall, SynuClean-D appears to be a promising molecule for therapeutic intervention in Parkinson's disease.


Assuntos
Amiloide/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Agregação Patológica de Proteínas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , alfa-Sinucleína/antagonistas & inibidores , Amiloide/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Ensaios de Triagem em Larga Escala , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/patologia , Células Tumorais Cultivadas , alfa-Sinucleína/metabolismo
5.
EMBO J ; 37(1): 139-159, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29146773

RESUMO

Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining.


Assuntos
Fixadores/química , Formaldeído/química , Glioxal/química , Imuno-Histoquímica/métodos , Microscopia de Fluorescência/métodos , Proteínas do Tecido Nervoso/metabolismo , Fixação de Tecidos/métodos , Animais , Células COS , Chlorocebus aethiops , Drosophila melanogaster , Células HeLa , Humanos , Camundongos
6.
Proc Natl Acad Sci U S A ; 114(25): E4971-E4977, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584093

RESUMO

Recent epidemiological and clinical studies have reported a significantly increased risk for melanoma in people with Parkinson's disease. Because no evidence could be obtained that genetic factors are the reason for the association between these two diseases, we hypothesized that of the three major Parkinson's disease-related proteins-α-synuclein, LRRK2, and Parkin-α-synuclein might be a major link. Our data, presented here, demonstrate that α-synuclein promotes the survival of primary and metastatic melanoma cells, which is the exact opposite of the effect that α-synuclein has on dopaminergic neurons, where its accumulation causes neuronal dysfunction and death. Because this detrimental effect of α-synuclein on neurons can be rescued by the small molecule anle138b, we explored its effect on melanoma cells. We found that treatment with anle138b leads to massive melanoma cell death due to a major dysregulation of autophagy, suggesting that α-synuclein is highly beneficial to advanced melanoma because it ensures that autophagy is maintained at a homeostatic level that promotes and ensures the cell's survival.


Assuntos
Autofagia/efeitos dos fármacos , Benzodioxóis/farmacologia , Compostos de Bifenilo/farmacologia , Morte Celular/efeitos dos fármacos , Melanoma/tratamento farmacológico , Pirazóis/farmacologia , alfa-Sinucleína/metabolismo , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Melanoma/metabolismo , Camundongos , Camundongos Nus , Doença de Parkinson/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
7.
Acta Neuropathol Commun ; 4(1): 128, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27938414

RESUMO

α-synuclein (aSyn) is associated with both sporadic and familial forms of Parkinson's disease (PD), the second most common neurodegenerative disorder after Alzheimer's disease. In particular, multiplications and point mutations in the gene encoding for aSyn cause familial forms of PD. Moreover, the accumulation of aSyn in Lewy Bodies and Lewy neurites in disorders such as PD, dementia with Lewy bodies, or multiple system atrophy, suggests aSyn misfolding and aggregation plays an important role in these disorders, collectively known as synucleinopathies. The exact function of aSyn remains unclear, but it is known to be associated with vesicles and membranes, and to have an impact on important cellular functions such as intracellular trafficking and protein degradation systems, leading to cellular pathologies that can be readily studied in cell-based models. Thus, understanding the molecular effects of aSyn point mutations may provide important insight into the molecular mechanisms underlying disease onset.We investigated the effect of the recently identified A53E aSyn mutation. Combining in vitro studies with studies in cell models, we found that this mutation reduces aSyn aggregation and increases proteasome activity, altering normal proteostasis.We observed that, in our experimental paradigms, the A53E mutation affects specific steps of the aggregation process of aSyn and different cellular processes, providing novel ideas about the molecular mechanisms involved in synucleinopathies.


Assuntos
Mutação Puntual , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Complexo de Golgi/metabolismo , Complexo de Golgi/patologia , Células HEK293 , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Agregação Patológica de Proteínas/patologia , Saccharomyces cerevisiae
8.
J Biol Chem ; 290(46): 27582-93, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26396193

RESUMO

Proteins are structurally dynamic molecules that perform specialized functions through unique conformational changes accessible in physiological environments. An ability to specifically and selectively control protein function via conformational modulation is an important goal for development of novel therapeutics and studies of protein mechanism in biological networks and disease. Here we applied a second-harmonic generation-based technique for studying protein conformation in solution and in real time to the intrinsically disordered, Parkinson disease related protein α-synuclein. From a fragment library, we identified small molecule modulators that bind to monomeric α-synuclein in vitro and significantly reduce α-synuclein aggregation in a neuronal cell culture model. Our results indicate that the conformation of α-synuclein is linked to the aggregation of protein in cells. They also provide support for a therapeutic strategy of targeting specific conformations of the protein to suppress or control its aggregation.


Assuntos
Antiparkinsonianos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , alfa-Sinucleína/química , Antiparkinsonianos/química , Antiparkinsonianos/isolamento & purificação , Linhagem Celular Tumoral , Humanos , Ligantes , Neurônios/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/metabolismo , Conformação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/isolamento & purificação
9.
Mol Cell Neurosci ; 62: 51-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25109238

RESUMO

Alpha-synuclein (α-syn) is a soluble protein highly enriched in presynaptic terminals of neurons. Accumulation of α-syn as intracellular filamentous aggregates is a pathological feature of sporadic and familial forms of Parkinson's disease (PD). Changes in α-syn post-translational modifications, as well as mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Here we assessed the correlation between α-syn phosphorylation at serine 129 (Ser129), the formation of reactive oxygen species (ROS) and mitochondrial dysfunction in SH-SY5Y cells expressing A53T mutant or wild-type (WT) α-syn, exposed to ferrous iron (FeSO4) and rotenone (complex I inhibitor). Under basal conditions, prolonged expression of A53T mutant α-syn altered mitochondria morphology, increased superoxide formation and phosphorylation at Ser129, which was linked to decreased activity of protein phosphatase 2A (PP2A). Exposure to FeSO4 or rotenone enhanced intracellular ROS levels, including superoxide anions, in both types of cells, along with α-syn Ser129 phosphorylation and mitochondrial depolarization. Most of these changes were largely evident in A53T mutant α-syn expressing cells. Overall, the data suggest that stimuli that promote ROS formation and mitochondrial alterations highly correlate with mutant α-syn phosphorylation at Ser129, which may precede cell degeneration in PD.


Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo , Fosforilação
10.
Neurobiol Dis ; 70: 149-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24983211

RESUMO

Alpha-synuclein (αS) misfolding is associated with Parkinson's disease (PD) but little is known about the mechanisms underlying αS toxicity. Increasing evidence suggests that defects in membrane transport play an important role in neuronal dysfunction. Here we demonstrate that the GTPase Rab8a interacts with αS in rodent brain. NMR spectroscopy reveals that the C-terminus of αS binds to the functionally important switch region as well as the C-terminal tail of Rab8a. In line with a direct Rab8a/αS interaction, Rab8a enhanced αS aggregation and reduced αS-induced cellular toxicity. In addition, Rab8 - the Drosophila ortholog of Rab8a - ameliorated αS-oligomer specific locomotor impairment and neuron loss in fruit flies. In support of the pathogenic relevance of the αS-Rab8a interaction, phosphorylation of αS at S129 enhanced binding to Rab8a, increased formation of insoluble αS aggregates and reduced cellular toxicity. Our study provides novel mechanistic insights into the interplay of the GTPase Rab8a and αS cytotoxicity, and underscores the therapeutic potential of targeting this interaction.


Assuntos
Proteínas de Drosophila/metabolismo , GTP Fosfo-Hidrolases/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Escherichia coli , GTP Fosfo-Hidrolases/genética , Humanos , Camundongos , Modelos Moleculares , Transtornos dos Movimentos/fisiopatologia , Mutação , Neurônios/fisiologia , Fosforilação , Ligação Proteica , Ratos , Sinaptossomos/metabolismo , Proteínas rab de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA