Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Hemasphere ; 8(6): e90, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38903535

RESUMO

Transcriptional cofactors of the ETO family are recurrent fusion partners in acute leukemia. We characterized the ETO2 regulome by integrating transcriptomic and chromatin binding analyses in human erythroleukemia xenografts and controlled ETO2 depletion models. We demonstrate that beyond its well-established repressive activity, ETO2 directly activates transcription of MYB, among other genes. The ETO2-activated signature is associated with a poorer prognosis in erythroleukemia but also in other acute myeloid and lymphoid leukemia subtypes. Mechanistically, ETO2 colocalizes with EP300 and MYB at enhancers supporting the existence of an ETO2/MYB feedforward transcription activation loop (e.g., on MYB itself). Both small-molecule and PROTAC-mediated inhibition of EP300 acetyltransferases strongly reduced ETO2 protein, chromatin binding, and ETO2-activated transcripts. Taken together, our data show that ETO2 positively enforces a leukemia maintenance program that is mediated in part by the MYB transcription factor and that relies on acetyltransferase cofactors to stabilize ETO2 scaffolding activity.

2.
Br J Cancer ; 130(4): 682-693, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38177660

RESUMO

BACKGROUND: Resistance mechanisms to combination therapy with dabrafenib plus trametinib remain poorly understood in patients with BRAFV600E-mutant advanced non-small-cell lung cancer (NSCLC). We examined resistance to BRAF inhibition by single CTC sequencing in BRAFV600E-mutant NSCLC. METHODS: CTCs and cfDNA were examined in seven BRAFV600E-mutant NSCLC patients at failure to treatment. Matched tumour tissue was available for four patients. Single CTCs were isolated by fluorescence-activated cell sorting following enrichment and immunofluorescence (Hoechst 33342/CD45/pan-cytokeratins) and sequenced for mutation and copy number-alteration (CNA) analyses. RESULTS: BRAFV600E was found in 4/4 tumour biopsies and 5/7 cfDNA samples. CTC mutations were mostly found in MAPK-independent pathways and only 1/26 CTCs were BRAFV600E mutated. CTC profiles encompassed the majority of matched tumour biopsy CNAs but 72.5% to 84.5% of CTC CNAs were exclusive to CTCs. Extensive diversity, involving MAPK, MAPK-related, cell cycle, DNA repair and immune response pathways, was observed in CTCs and missed by analyses on tumour biopsies and cfDNA. Driver alterations in clinically relevant genes were recurrent in CTCs. CONCLUSIONS: Resistance was not driven by BRAFV600E-mutant CTCs. Extensive tumour genomic heterogeneity was found in CTCs compared to tumour biopsies and cfDNA at failure to BRAF inhibition, in BRAFV600E-mutant NSCLC, including relevant alterations that may represent potential treatment opportunities.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ácidos Nucleicos Livres , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Células Neoplásicas Circulantes/patologia , Mutação
3.
Leukemia ; 37(3): 571-579, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36585521

RESUMO

Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.


Assuntos
Leucemia Mieloide , Fatores de Transcrição , Criança , Humanos , Caspase 3 , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
4.
Nat Commun ; 13(1): 6739, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347876

RESUMO

Targeting the reprogramming and phagocytic capacities of tumor-associated macrophages (TAMs) has emerged as a therapeutic opportunity for cancer treatment. Here, we demonstrate that tumor cell phagocytosis drives the pro-inflammatory activation of TAMs and identify a key role for the cyclin-dependent kinase inhibitor CDKN1A (p21). Through the transcriptional repression of Signal-Regularity Protein α (SIRPα), p21 promotes leukemia cell phagocytosis and, subsequently, the pro-inflammatory reprogramming of phagocytic macrophages that extends to surrounding macrophages through Interferon γ. In mouse models of human T-cell acute lymphoblastic leukemia (T-ALL), infusion of human monocytes (Mos) engineered to overexpress p21 (p21TD-Mos) leads to Mo differentiation into phagocytosis-proficient TAMs that, after leukemia cell engulfment, undergo pro-inflammatory activation and trigger the reprogramming of bystander TAMs, reducing the leukemic burden and substantially prolonging survival in mice. These results reveal p21 as a trigger of phagocytosis-guided pro-inflammatory TAM reprogramming and highlight the potential for p21TD-Mo-based cellular therapy as a cancer immunotherapy.


Assuntos
Leucemia Mieloide Aguda , Fagocitose , Humanos , Camundongos , Animais , Imunoterapia , Macrófagos/metabolismo , Leucemia Mieloide Aguda/patologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
5.
Commun Biol ; 4(1): 1382, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887504

RESUMO

During ontogeny, macrophage populations emerge in the Yolk Sac (YS) via two distinct progenitor waves, prior to hematopoietic stem cell development. Macrophage progenitors from the primitive/"early EMP" and transient-definitive/"late EMP" waves both contribute to various resident primitive macrophage populations in the developing embryonic organs. Identifying factors that modulates early stages of macrophage progenitor development may lead to a better understanding of defective function of specific resident macrophage subsets. Here we show that YS primitive macrophage progenitors express Lyl-1, a bHLH transcription factor related to SCL/Tal-1. Transcriptomic analysis of YS macrophage progenitors indicate that primitive macrophage progenitors present at embryonic day 9 are clearly distinct from those present at later stages. Disruption of Lyl-1 basic helix-loop-helix domain leads initially to an increased emergence of primitive macrophage progenitors, and later to their defective differentiation. These defects are associated with a disrupted expression of gene sets related to embryonic patterning and neurodevelopment. Lyl-1-deficiency also induce a reduced production of mature macrophages/microglia in the early brain, as well as a transient reduction of the microglia pool at midgestation and in the newborn. We thus identify Lyl-1 as a critical regulator of primitive macrophages and microglia development, which disruption may impair resident-macrophage function during organogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Macrófagos/metabolismo , Microglia/metabolismo , Proteínas de Neoplasias/genética , Saco Vitelino/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Feminino , Camundongos/embriologia , Proteínas de Neoplasias/metabolismo
6.
NPJ Precis Oncol ; 5(1): 67, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272470

RESUMO

Gatekeeper mutations are identified in only 50% of the cases at resistance to Anaplastic Lymphoma Kinase (ALK)-tyrosine kinase inhibitors (TKIs). Circulating tumor cells (CTCs) are relevant tools to identify additional resistance mechanisms and can be sequenced at the single-cell level. Here, we provide in-depth investigation of copy number alteration (CNA) heterogeneity in phenotypically characterized CTCs at resistance to ALK-TKIs in ALK-positive non-small cell lung cancer. Single CTC isolation and phenotyping were performed by DEPArray or fluorescence-activated cell sorting following enrichment and immunofluorescence staining (ALK/cytokeratins/CD45/Hoechst). CNA heterogeneity was evaluated in six ALK-rearranged patients harboring ≥ 10 CTCs/20 mL blood at resistance to 1st and 3rd ALK-TKIs and one presented gatekeeper mutations. Out of 82 CTCs isolated by FACS, 30 (37%) were ALK+/cytokeratins-, 46 (56%) ALK-/cytokeratins+ and 4 (5%) ALK+/cytokeratins+. Sequencing of 43 CTCs showed highly altered CNA profiles and high levels of chromosomal instability (CIN). Half of CTCs displayed a ploidy >2n and 32% experienced whole-genome doubling. Hierarchical clustering showed significant intra-patient and wide inter-patient CTC diversity. Classification of 121 oncogenic drivers revealed the predominant activation of cell cycle and DNA repair pathways and of RTK/RAS and PI3K to a lower frequency. CTCs showed wide CNA heterogeneity and elevated CIN at resistance to ALK-TKIs. The emergence of epithelial ALK-negative CTCs may drive resistance through activation of bypass signaling pathways, while ALK-rearranged CTCs showed epithelial-to-mesenchymal transition characteristics potentially contributing to ALK-TKI resistance. Comprehensive analysis of CTCs could be of great help to clinicians for precision medicine and resistance to ALK-targeted therapies.

7.
STAR Protoc ; 2(1): 100267, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33490983

RESUMO

CD103+CD8+ tumor-resident memory T cells (TRM) are important components of anti-tumor immunity. However, their role in response to cancer immunotherapy is not fully understood. The protocol describes how to isolate CD8+ T cells and autologous tumor cells from human lung tumors to study the functional activities of CD8+ T cells. Tumors are heterogeneous in terms of the quantity and quality of immune cell types, so the yield of TRM cells depends on the features of the tumor. For complete details on the use and execution of this protocol, please refer to Corgnac et al. (2020).


Assuntos
Linfócitos T CD8-Positivos/imunologia , Separação Celular , Neoplasias Pulmonares/imunologia , Linfócitos do Interstício Tumoral/imunologia , Células T de Memória/imunologia , Microambiente Tumoral/imunologia , Humanos
9.
Blood Cancer J ; 10(3): 38, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170099

RESUMO

Aberrant NF-κB activation is a hallmark of most B-cell malignancies. Recurrent inactivating somatic mutations in the NFKBIE gene, which encodes IκBε, an inhibitor of NF-κB-inducible activity, are reported in several B-cell malignancies with highest frequencies in chronic lymphocytic leukemia and primary mediastinal B-cell lymphoma, and account for a fraction of NF-κB pathway activation. The impact of NFKBIE deficiency on B-cell development and function remains, however, largely unknown. Here, we show that Nfkbie-deficient mice exhibit an amplification of marginal zone B cells and an expansion of B1 B-cell subsets. In germinal center (GC)-dependent immune response, Nfkbie deficiency triggers expansion of GC B-cells through increasing cell proliferation in a B-cell autonomous manner. We also show that Nfkbie deficiency results in hyperproliferation of a B1 B-cell subset and leads to increased NF-κB activation in these cells upon Toll-like receptor stimulation. Nfkbie deficiency cooperates with mutant MYD88 signaling and enhances B-cell proliferation in vitro. In aged mice, Nfkbie absence drives the development of an oligoclonal indolent B-cell lymphoproliferative disorders, resembling monoclonal B-cell lymphocytosis. Collectively, these findings shed light on an essential role of IκBε in finely tuning B-cell development and function.


Assuntos
Proteínas I-kappa B/deficiência , Leucemia Linfocítica Crônica de Células B/etiologia , Proteínas Proto-Oncogênicas/deficiência , Animais , Leucemia Linfocítica Crônica de Células B/genética , Camundongos
10.
Clin Cancer Res ; 26(13): 3307-3318, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32220889

RESUMO

PURPOSE: Children with Down syndrome (constitutive trisomy 21) that develop acute lymphoblastic leukemia (DS-ALL) have a 3-fold increased likelihood of treatment-related mortality coupled with a higher cumulative incidence of relapse, compared with other children with B-cell acute lymphoblastic leukemia (B-ALL). This highlights the lack of suitable treatment for Down syndrome children with B-ALL. EXPERIMENTAL DESIGN: To facilitate the translation of new therapeutic agents into clinical trials, we built the first preclinical cohort of patient-derived xenograft (PDX) models of DS-ALL, comprehensively characterized at the genetic and transcriptomic levels, and have proven its suitability for preclinical studies by assessing the efficacy of drug combination between the MEK inhibitor trametinib and conventional chemotherapy agents. RESULTS: Whole-exome and RNA-sequencing experiments revealed a high incidence of somatic alterations leading to RAS/MAPK pathway activation in our cohort of DS-ALL, as well as in other pediatric B-ALL presenting somatic gain of the chromosome 21 (B-ALL+21). In murine and human B-cell precursors, activated KRASG12D functionally cooperates with trisomy 21 to deregulate transcriptional networks that promote increased proliferation and self renewal, as well as B-cell differentiation blockade. Moreover, we revealed that inhibition of RAS/MAPK pathway activation using the MEK1/2 inhibitor trametinib decreased leukemia burden in several PDX models of B-ALL+21, and enhanced survival of DS-ALL PDX in combination with conventional chemotherapy agents such as vincristine. CONCLUSIONS: Altogether, using novel and suitable PDX models, this study indicates that RAS/MAPK pathway inhibition represents a promising strategy to improve the outcome of Down syndrome children with B-cell precursor leukemia.


Assuntos
Síndrome de Down/complicações , Síndrome de Down/genética , Síndrome de Down/metabolismo , Leucemia de Células B/diagnóstico , Leucemia de Células B/etiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Leucemia de Células B/terapia , Camundongos , Camundongos Transgênicos , Oncogenes , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos
11.
J Biophotonics ; 13(1): e201900217, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593616

RESUMO

Optical imaging of living animals is a unique method of studying the dynamics of physiological and pathological processes at a subcellular level. One-shot acquisitions at high resolution can be achieved on exteriorized organs before animal euthanasia. For longitudinal follow-up, intravital imaging can be used and involves imaging windows implanted in cranial, thoracic or dorsal regions. Several imaging window models exist, but none have proven to be applicable for long-term monitoring and most biological processes take place over several weeks. Moreover, none are compatible with multiple imaging modalities, meaning that different biological parameters cannot be assessed in an individual animal. We developed a new dorsal chamber that was well tolerated by mice (over several months) and allowed individual and collective cell tracking and behaviour analysis by optical imaging, ultrasound and magnetic resonance tomography. This new model broadens potential applications to areas requiring study of long-term biological processes, as in cancer research.


Assuntos
Neoplasias , Animais , Seguimentos , Microscopia Intravital , Camundongos , Imagem Multimodal , Neoplasias/diagnóstico por imagem , Ultrassonografia
12.
Cancer Discov ; 9(12): 1736-1753, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31662298

RESUMO

Fusion oncogenes are prevalent in several pediatric cancers, yet little is known about the specific associations between age and phenotype. We observed that fusion oncogenes, such as ETO2-GLIS2, are associated with acute megakaryoblastic or other myeloid leukemia subtypes in an age-dependent manner. Analysis of a novel inducible transgenic mouse model showed that ETO2-GLIS2 expression in fetal hematopoietic stem cells induced rapid megakaryoblastic leukemia whereas expression in adult bone marrow hematopoietic stem cells resulted in a shift toward myeloid transformation with a strikingly delayed in vivo leukemogenic potential. Chromatin accessibility and single-cell transcriptome analyses indicate ontogeny-dependent intrinsic and ETO2-GLIS2-induced differences in the activities of key transcription factors, including ERG, SPI1, GATA1, and CEBPA. Importantly, switching off the fusion oncogene restored terminal differentiation of the leukemic blasts. Together, these data show that aggressiveness and phenotypes in pediatric acute myeloid leukemia result from an ontogeny-related differential susceptibility to transformation by fusion oncogenes. SIGNIFICANCE: This work demonstrates that the clinical phenotype of pediatric acute myeloid leukemia is determined by ontogeny-dependent susceptibility for transformation by oncogenic fusion genes. The phenotype is maintained by potentially reversible alteration of key transcription factors, indicating that targeting of the fusions may overcome the differentiation blockage and revert the leukemic state.See related commentary by Cruz Hernandez and Vyas, p. 1653.This article is highlighted in the In This Issue feature, p. 1631.


Assuntos
Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/genética , Adolescente , Fatores Etários , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Leucemia Mieloide Aguda/genética , Camundongos , Transplante de Neoplasias , Fatores de Transcrição , Células Tumorais Cultivadas
13.
Clin Cancer Res ; 25(22): 6671-6682, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31439588

RESUMO

PURPOSE: Patients with anaplastic lymphoma kinase (ALK)-rearranged non-small-cell lung cancer (NSCLC) inevitably develop resistance to ALK inhibitors. New diagnostic strategies are needed to assess resistance mechanisms and provide patients with the most effective therapy. We asked whether single circulating tumor cell (CTC) sequencing can inform on resistance mutations to ALK inhibitors and underlying tumor heterogeneity in ALK-rearranged NSCLC. EXPERIMENTAL DESIGN: Resistance mutations were investigated in CTCs isolated at the single-cell level from patients at disease progression on crizotinib (n = 14) or lorlatinib (n = 3). Three strategies including filter laser-capture microdissection, fluorescence activated cell sorting, and the DEPArray were used. One hundred twenty-six CTC pools and 56 single CTCs were isolated and sequenced. Hotspot regions over 48 cancer-related genes and 14 ALK mutations were examined to identify ALK-independent and ALK-dependent resistance mechanisms. RESULTS: Multiple mutations in various genes in ALK-independent pathways were predominantly identified in CTCs of crizotinib-resistant patients. The RTK-KRAS (EGFR, KRAS, BRAF genes) and TP53 pathways were recurrently mutated. In one lorlatinib-resistant patient, two single CTCs out of 12 harbored ALK compound mutations. CTC-1 harbored the ALK G1202R/F1174C compound mutation virtually similar to ALK G1202R/F1174L present in the corresponding tumor biopsy. CTC-10 harbored a second ALK G1202R/T1151M compound mutation not detected in the tumor biopsy. By copy-number analysis, CTC-1 and the tumor biopsy had similar profiles, whereas CTC-10 harbored multiple copy-number alterations and whole-genome duplication. CONCLUSIONS: Our results highlight the genetic heterogeneity and clinical utility of CTCs to identify therapeutic resistance mutations in ALK-rearranged patients. Single CTC sequencing may be a unique tool to assess heterogeneous resistance mechanisms and help clinicians for treatment personalization and resistance options to ALK-targeted therapies.


Assuntos
Quinase do Linfoma Anaplásico/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Rearranjo Gênico , Neoplasias Pulmonares/genética , Células Neoplásicas Circulantes/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Adulto , Idoso , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Biologia Computacional/métodos , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Análise Mutacional de DNA , Feminino , Humanos , Imuno-Histoquímica , Imunofenotipagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Células Neoplásicas Circulantes/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Sequenciamento Completo do Genoma , Adulto Jovem
14.
Blood ; 124(26): 3967-77, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25298036

RESUMO

Megakaryocytes are highly specialized precursor cells that produce platelets via cytoplasmic extensions called proplatelets. Proplatelet formation (PPF) requires profound changes in microtubule and actin organization. In this work, we demonstrated that DIAPH1 (mDia1), a mammalian homolog of Drosophila diaphanous that works as an effector of the small GTPase Rho, negatively regulates PPF by controlling the dynamics of the actin and microtubule cytoskeletons. Moreover, we showed that inhibition of both DIAPH1 and the Rho-associated protein kinase (Rock)/myosin pathway increased PPF via coordination of both cytoskeletons. We provide evidence that 2 major effectors of the Rho GTPase pathway (DIAPH1 and Rock/myosin II) are involved not only in Rho-mediated stress fibers assembly, but also in the regulation of microtubule stability and dynamics during PPF.


Assuntos
Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citoesqueleto/metabolismo , Megacariócitos/citologia , Microtúbulos/metabolismo , Antígenos CD34/metabolismo , Plaquetas/citologia , Plaquetas/metabolismo , Diferenciação Celular , Clonagem Molecular , Forminas , GTP Fosfo-Hidrolases/metabolismo , Humanos , Lentivirus/genética , Miosina Tipo II/metabolismo , RNA Interferente Pequeno/metabolismo , Trombopoetina/química , Tubulina (Proteína)/química
15.
Blood ; 124(13): 2104-15, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25143485

RESUMO

Megakaryopoiesis is a 2-step differentiation process, regulated by thrombopoietin (TPO), on binding to its cognate receptor myeloproliferative leukemia (MPL). This receptor associates with intracytoplasmic tyrosine kinases, essentially janus kinase 2 (JAK2), which regulates MPL stability and cell-surface expression, and mediates TPO-induced signal transduction. We demonstrate that JAK2 and MPL mediate TPO-induced proliferation arrest and megakaryocytic differentiation of the human megakaryoblastic leukemia cell line UT7-MPL. A decrease in JAK2 or MPL protein expression, and JAK2 chemical inhibition, suppress this antiproliferative action of TPO. The expression of JAK2 and MPL, which progressively increases along normal human megakaryopoiesis, is decreased in platelets of patients diagnosed with JAK2- or MPL-mutated essential thrombocytemia and primary myelofibrosis, 2 myeloproliferative neoplasms in which megakaryocytes (MKs) proliferate excessively. Finally, low doses of JAK2 chemical inhibitors are shown to induce a paradoxical increase in MK production, both in vitro and in vivo. We propose that JAK2 and MPL expression levels regulate megakaryocytic proliferation vs differentiation in both normal and pathological conditions, and that JAK2 chemical inhibitors could promote a paradoxical thrombocytosis when used at suboptimal doses.


Assuntos
Autoantígenos/metabolismo , Diferenciação Celular , Iodeto Peroxidase/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Janus Quinase 2/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Receptores de Trombopoetina/metabolismo , Animais , Autoantígenos/genética , Plaquetas/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células , Expressão Gênica , Humanos , Iodeto Peroxidase/genética , Proteínas de Ligação ao Ferro/genética , Janus Quinase 2/genética , Camundongos , Fenótipo , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , RNA Interferente Pequeno/genética , Receptores de Trombopoetina/genética , Trombocitemia Essencial/genética , Trombocitemia Essencial/metabolismo
16.
J Exp Med ; 209(11): 2017-31, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23045605

RESUMO

Acute megakaryoblastic leukemia (AMKL) is a heterogeneous disease generally associated with poor prognosis. Gene expression profiles indicate the existence of distinct molecular subgroups, and several genetic alterations have been characterized in the past years, including the t(1;22)(p13;q13) and the trisomy 21 associated with GATA1 mutations. However, the majority of patients do not present with known mutations, and the limited access to primary patient leukemic cells impedes the efficient development of novel therapeutic strategies. In this study, using a xenotransplantation approach, we have modeled human pediatric AMKL in immunodeficient mice. Analysis of high-throughput RNA sequencing identified recurrent fusion genes defining new molecular subgroups. One subgroup of patients presented with MLL or NUP98 fusion genes leading to up-regulation of the HOX A cluster genes. A novel CBFA2T3-GLIS2 fusion gene resulting from a cryptic inversion of chromosome 16 was identified in another subgroup of 31% of non-Down syndrome AMKL and strongly associated with a gene expression signature of Hedgehog pathway activation. These molecular data provide useful markers for the diagnosis and follow up of patients. Finally, we show that AMKL xenograft models constitute a relevant in vivo preclinical screening platform to validate the efficacy of novel therapies such as Aurora A kinase inhibitors.


Assuntos
Genômica/métodos , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Megacarioblástica Aguda/genética , Ensaios Antitumorais Modelo de Xenoenxerto , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Idoso , Sequência de Aminoácidos , Animais , Aurora Quinase A , Aurora Quinases , Azepinas/farmacologia , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Estimativa de Kaplan-Meier , Fatores de Transcrição Kruppel-Like/genética , Leucemia Megacarioblástica Aguda/patologia , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Fusão Oncogênica/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Proteínas Repressoras/genética
17.
J Immunol ; 187(1): 102-9, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622855

RESUMO

The CD5 coreceptor is expressed on all T cells and on the B1a B cell subset. It is associated with TCR and BCR, and modulates intracellular signals initiated by both Ag receptor complexes. Human CD5 contributes to regulation of the antitumor immune response and susceptibility of specific CTL to activation-induced cell death (AICD) triggered by the tumor. In this study, we compared the T cell response to the B16F10 melanoma engrafted into CD5-deficient and wild-type C57BL/6 mice. Compared with wild-type mice, CD5 knockout animals displayed delayed tumor growth, associated with tumor infiltration by T cell populations exhibiting a more activated phenotype and enhanced antitumor effector functions. However, control of tumor progression in CD5(-/-) mice was transient due to increased AICD of CD8(+) tumor-infiltrating T lymphocytes. Remarkably, in vivo protection of T cells from TCR-mediated apoptosis by an adenovirus engineered to produce soluble Fas resulted in a dramatic reduction in tumor growth. Our data suggest that recruitment of tumor-specific T cells in the tumor microenvironment occurs at early stages of cancer development and that tumor-mediated AICD of tumor-infiltrating T lymphocytes is most likely involved in tumor escape from the immune system.


Assuntos
Antígenos CD5/genética , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Melanoma Experimental/prevenção & controle , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/patologia , Regulação para Cima/imunologia , Animais , Antígenos CD5/metabolismo , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/prevenção & controle , Morte Celular/genética , Morte Celular/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica/genética , Humanos , Tolerância Imunológica/genética , Ativação Linfocitária/genética , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Antígenos de Linfócitos T/biossíntese , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T Citotóxicos/metabolismo , Regulação para Cima/genética
18.
Exp Hematol ; 39(6): 629-42, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21420467

RESUMO

OBJECTIVE: LYL-1 is a transcription factor containing a basic helix-loop-helix motif closely related to SCL/TAL-1, a regulator of erythroid differentiation. Because LYL-1 is expressed in erythroid cell populations, we addressed its role in erythropoiesis using knockin mice. MATERIALS AND METHODS: Erythropoiesis of LYL-1(-/-) mice was studied by progenitor assays, flow cytometry, reconstitution assays, and functional tests. Expression of LYL-1, SCL, and GATA-1 was assessed at messenger RNA level by quantitative reverse transcription polymerase chain reaction. RESULTS: LYL-1(-/-) mice displayed decreased erythropoiesis with a partial arrest in differentiation, and enhanced apoptosis associated with decreased Bcl-x(L) expression in the bone marrow (BM). In addition, LYL-1(-/-) BM cells were severely impaired in their abilities to reconstitute the erythroid lineage in competitive assays, suggesting a cell autonomous abnormality of erythropoiesis. In parallel, erythroid progenitor and precursor cells were significantly increased in the spleen of LYL-1(-/-) mice. Expression of LYL-1 was differentially regulated during maturation of erythroblasts and strikingly different between spleen- and BM-derived erythroblasts. Expression of LYL-1 decreased during erythroid differentiation in the spleen whereas it increased in the BM to reach the same level in mature erythroblasts as in the soleen. Loss of Lyl-1 expression was accompanied with an increase of SCL/TAL-1 and GATA-1 transcripts in spleen but not in BM-derived erythroblasts. Furthermore, phenylhydrazine-induced stress erythropoiesis was elevated in LYL-1(-/-) mice and mutant BM and spleen erythroid progenitors were hypersensitive to erythropoietin. CONCLUSIONS: Taken together, these results suggest that LYL-1 plays a definite role in erythropoiesis, albeit with different effects in BM specifically regulating basal erythropoiesis, and spleen, controlling stress-induced erythropoiesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Eritropoese/genética , Proteínas de Neoplasias/fisiologia , Estresse Fisiológico , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Primers do DNA , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
PLoS Biol ; 8(9)2010 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-20838657

RESUMO

Thrombopoietin (TPO) via signaling through its cognate receptor MPL is a key cytokine involved in the regulation of megakaryocyte differentiation leading to platelet production. Mature megakaryocytes are polyploid cells that have arrested DNA replication and cellular proliferation but continue sustained protein synthesis. Here, we show that TPO induces cell-cycle arrest in the megakaryocytic UT7-MPL cell line by the activation of the ERK/MAPK pathway, induction of p21CIP transcription, and senescence markers through EGR1 activation. A similar senescence-like process was also detected in normal primary postmitotic megakaryocytes. In contrast, senescence was not observed in malignant megakaryocytes derived from primary myelofibrosis patients (a form of chronic myeloid hemopathy). Our data indicate that polyploid mature megakaryocytes receive signals from TPO to arrest cell proliferation and enter a senescent-like state. An escape from this physiological process may be associated with certain myeloproliferative neoplasms leading to abnormal megakaryocytic proliferation.


Assuntos
Ciclo Celular , Proliferação de Células , Senescência Celular , Megacariócitos/citologia , Linhagem Celular , Humanos , Megacariócitos/efeitos dos fármacos , Trombopoetina/farmacologia
20.
Blood ; 116(13): 2345-55, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20548097

RESUMO

Polyploidization of megakaryocytes (MKs), the platelet precursors, occurs by endomitosis, a mitotic process that fails at late stages of cytokinesis. Expression and function of Aurora B kinase during endomitosis remain controversial. Here, we report that Aurora B is normally expressed during the human MK endomitotic process. Aurora B localized normally in the midzone or midbody during anaphase and telophase in low ploidy megakaryocytes and in up to 16N rare endomitotic MKs was observed. Aurora B was also functional during cytokinesis as attested by phosphorylation of both its activation site and MgcRacGAP, its main substrate. However, despite its activation, Aurora B did not prevent furrow regression. Inhibition of Aurora B by AZD1152-HQPA decreased cell cycle entry both in 2N to 4N and polyploid MKs and induced apoptosis mainly in 2N to 4N cells. In both MK classes, AZD1152-HQPA induced p53 activation and retinoblastoma hypophosphorylation. Resistance of polyploid MKs to apoptosis correlated to a high BclxL level. Aurora B inhibition did not impair MK polyploidization but profoundly modified the endomitotic process by inducing a mis-segregation of chromosomes and a mitotic failure in anaphase. This indicates that Aurora B is dispensable for MK polyploidization but is necessary to achieve a normal endomitotic process.


Assuntos
Megacariócitos/citologia , Megacariócitos/enzimologia , Mitose/genética , Mitose/fisiologia , Poliploidia , Proteínas Serina-Treonina Quinases/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Aurora Quinase B , Aurora Quinases , Segregação de Cromossomos/efeitos dos fármacos , Segregação de Cromossomos/fisiologia , Fase G1/efeitos dos fármacos , Fase G1/fisiologia , Humanos , Técnicas In Vitro , Proteínas Inibidoras de Apoptose , Megacariócitos/efeitos dos fármacos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fase S/efeitos dos fármacos , Fase S/fisiologia , Fuso Acromático/enzimologia , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA