Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0120656, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25807005

RESUMO

In recent years, several studies have shown a decline in reproductive success in males in both humans and wildlife. Research on male fertility has largely focused on vertebrates, although invertebrates constitute the vast majority of terrestrial biodiversity. The reduction of their reproductive capacities due to environmental stresses can have strong negative ecological impacts, and also dramatic consequences on world food production if it affects the reproductive success of biological control agents, such as parasitic wasps used to control crop pests. Here Nasonia vitripennis, a parasitic wasp of various fly species, was studied to test the effects of 24h-heat stress applied during the first pupal stage on male fertility. Results showed that only primary spermatocytes were present at the first pupal stage in all cysts of the testes. Heat stress caused a delay in spermatogenesis during development and a significant decrease in sperm stock at emergence. Females mated with these heat-stressed males showed a reduce sperm count stored in their spermatheca. Females did not appear to distinguish heat-stressed from control males and did not remate more frequently to compensate for the lack of sperm transferred. As a result, females mated with heat-stressed males produced a suboptimal lifetime offspring sex ratio compared to those mated with control males. This could further impact the population dynamics of this species. N. vitripennis appears to be an interesting biological model to study the mechanisms of subfertility and its consequence on female reproductive strategies and provides new research perspectives in both invertebrates and vertebrates.


Assuntos
Espermatogênese/fisiologia , Espermatozoides/fisiologia , Estresse Psicológico , Vespas/fisiologia , Animais , Feminino , Fertilidade/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Atrativos Sexuais/análise , Razão de Masculinidade , Contagem de Espermatozoides , Temperatura , Testículo/patologia , Vespas/crescimento & desenvolvimento
2.
PLoS One ; 8(10): e75045, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124465

RESUMO

We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, ß, δ and γ) and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110ß>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not ß- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not ß- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/-) cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110ß, but not α- or δ- activity; in PTEN(-/-) MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110ß function in the absence of PTEN.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/farmacologia , Feminino , Humanos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosforilação/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
3.
EMBO J ; 31(14): 3118-29, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22728827

RESUMO

The molecular mechanisms by which receptors regulate the Ras Binding Domains of the PIP3-generating, class I PI3Ks remain poorly understood, despite their importance in a range of biological settings, including tumorigenesis, activation of neutrophils by pro-inflammatory mediators, chemotaxis of Dictyostelium and cell growth in Drosophila. We provide evidence that G protein-coupled receptors (GPCRs) can stimulate PLCb2/b3 and diacylglycerol- dependent activation of the RasGEF, RasGRP4 in neutrophils. The genetic loss of RasGRP4 phenocopies knock-in of a Ras-insensitive version of PI3Kc in its effects on PI3Kc-dependent PIP3 accumulation, PKB activation, chemokinesis and reactive oxygen species (ROS) formation. These results establish a new mechanism by which GPCRs can stimulate Ras, and the broadly important principle that PLCs can control activation of class I PI3Ks.


Assuntos
Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Neutrófilos/enzimologia , Fosfolipase C beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular , Classe Ib de Fosfatidilinositol 3-Quinase/genética , Ativação Enzimática/fisiologia , Humanos , Camundongos , Camundongos Knockout , Fosfolipase C beta/genética , Proteínas Proto-Oncogênicas c-akt/genética , Receptores Acoplados a Proteínas G/genética , Fatores ras de Troca de Nucleotídeo Guanina/genética , Proteínas ras/genética
4.
PLoS One ; 7(12): e51579, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284716

RESUMO

Endocrine disruptors (ED) have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA) is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10(-12) to 10(-5) M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5-10.5 gestational weeks (GW) or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc) for rat and 12.5 dpc for mouse) were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1-3 days. BPA concentrations as low as 10(-8) M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10(-5) M BPA were required. Similarly, 10(-8) M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10(-5) and 10(-6) M diethylstilbestrol (DES), a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor α (ERα). In conclusion, these results evidenced i) a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10(-8) M upwards, ii) species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii) a specific signaling pathway for BPA which differs from the DES one and which does not involve ERα.


Assuntos
Compostos Benzidrílicos/farmacologia , Dietilestilbestrol/farmacologia , Estrogênios não Esteroides/farmacologia , Feto/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Fenóis/farmacologia , Testículo/efeitos dos fármacos , Animais , Receptor alfa de Estrogênio/fisiologia , Feminino , Humanos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Gravidez , RNA Mensageiro/genética , Radioimunoensaio , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esteroides/metabolismo , Testículo/citologia , Testículo/metabolismo , Testosterona/metabolismo
5.
Mol Cell Endocrinol ; 315(1-2): 271-6, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-19778579

RESUMO

Follicle-stimulating hormone (FSH) controls the proliferation and differentiation of Sertoli cells of the testis. FSH binds a G protein-coupled receptor (GPCR) to stimulate downstream effectors of the phosphoinositide-3 kinase (PI3K)-dependent pathway, without enhancing PI3K activity. To clarify this paradox, we explored the activity of phosphatase and tensin homolog deleted in chromosome 10 (PTEN), the PI3K major regulator, in primary cultures of rat Sertoli cells. We show that, within minutes, FSH increases PTEN neo-synthesis, requiring the proteasomal degradation of an unidentified intermediate, as well as PTEN enzymatic activity. Importantly, introducing an antisense cDNA of PTEN into differentiating Sertoli cells restores FSH-dependent cell proliferation. In conclusion, these results provide a new mechanism of PTEN regulation, which could serve to block entry into S phase of Sertoli cells, while they are proceeding through differentiation in prepubertal animals.


Assuntos
Hormônio Foliculoestimulante/farmacologia , Mitose/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Puberdade/fisiologia , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/fisiologia , Animais , Células Cultivadas , Hormônio Foliculoestimulante/metabolismo , Humanos , Masculino , Mitose/fisiologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Ratos , Ratos Wistar , Células de Sertoli/citologia , Suínos , Transferrina/metabolismo
6.
Cell Mol Life Sci ; 66(21): 3487-503, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19730801

RESUMO

The mechanisms whereby G protein-coupled receptors (GPCR) activate signalling pathways involved in mRNA translation are ill-defined, in contrast to tyrosine kinase receptors (TKR). We compared a GPCR and a TKR, both endogenously expressed, for their ability to mediate phosphorylation of 70-kDa ribosomal S6 kinase p70S6K in primary rat Sertoli cells at two developmental stages. In proliferating cells stimulated with follicle-stimulating hormone (FSH), active p70S6K was phosphorylated on T389 and T421/S424, through cAMP-dependent kinase (PKA) and phosphatidyl-inositide-3 kinase (PI3K) antagonizing actions. In FSH-stimulated differentiating cells, active p70S6K was phosphorylated solely on T389, PKA and PI3K independently enhancing its activity. At both developmental stages, insulin-induced p70S6K regulation was consistent with reported data. Therefore, TKR and GPCR trigger distinct p70S6K active conformations. p70S6K developmental regulation was formalized in a dynamic mathematical model fitting the data, which led to experimentally inaccessible predictions on p70S6K phosphorylation rate.


Assuntos
Diferenciação Celular/fisiologia , Modelos Biológicos , Receptores Acoplados a Proteínas G/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Células de Sertoli/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cromonas/farmacologia , Simulação por Computador , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônio Foliculoestimulante/farmacologia , Masculino , Morfolinas/farmacologia , Fosforilação/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/química , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo
7.
Folia Histochem Cytobiol ; 47(5): S67-74, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20067897

RESUMO

There are great concerns about the increasing incidence of abnormalities in male reproductive function. Human sperm counts have markedly dropped and the rate of testicular cancer has clearly augmented over the past four decades. Moreover, the prevalence rates of cryptorchidism and hypospadias are also probably increasing. It has been hypothesized that all these adverse trends in male reproduction result from abnormalities in the development of the testis during foetal and neonatal life. Furthermore, many recent epidemiological, clinical and experimental data suggest that these male reproductive disorders could be due to the effects of xenobiotics termed endocrine disruptors, which are becoming more and more concentrated and prevalent in our environment. Among these endocrine disruptors, we chose to focus this review on the phthalates for different reasons: 1) they are widespread in the environment; 2) their concentrations in many human biological fluids have been measured; 3) the experimental data using rodent models suggesting a reprotoxicity are numerous and are the most convincing; 4) their deleterious effects on the in vivo and in vitro development and function of the rat foetal testis have been largely studied; 5) some epidemiological data in humans suggest a reprotoxic effect at environmental concentrations at least during neonatal life. However, the direct effects of phthalates on human foetal testis have never been explored. Thus, as we did for the rat in the 1990s, we recently developed and validated an organ culture system which allows maintenance of the development of the different cell types of human foetal testis. In this system, addition of 10-4 M MEHP (mono-2-ethylhexyl phthalate), the most produced phthalate, had no effect on basal or LH-stimulated production of testosterone, but it reduced the number of germ cells by increasing their apoptosis, without modification of their proliferation. This is the first experimental demonstration that phthalates alter the development of the foetal testis in humans. Using our organotypic culture system, we and others are currently investigating the effect of MEHP in the mouse and the rat, and it will be interesting to compare the results between these species to analyse the relevance of toxicological tests based on rodent models.


Assuntos
Disruptores Endócrinos , Testículo , Animais , Humanos , Masculino , Neoplasias Testiculares , Testículo/metabolismo , Testosterona
8.
J Clin Endocrinol Metab ; 92(7): 2632-9, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17456577

RESUMO

CONTEXT: Germ cells formed during human fetal life are essential for fertility of the adult, and several studies have described an increasing frequency of male reproductive disorders, which may have a common origin in fetal life and which are hypothesized to be caused by endocrine disruptors. However, factors inducing a genotoxic stress may also be implicated. OBJECTIVES: We investigated the effect of gamma-irradiation on the functions of human fetal testis during the first trimester of gestation by using an organ culture system. Then we focused on the role of the p53 pathway in the observed effects. RESULTS: Germ cells were highly sensitive to irradiation even at doses as low as 0.1 and 0.2 Gy. Indeed, for these doses, one third of germ cells died by apoptosis. Other germ cells were blocked in their cycle, but no repair seemed to occur, and longer culture with the highest dose used showed that they were destined to die. Sertoli cells were less affected, although their proliferation and the level of anti-Müllerian hormone were reduced. Irradiation had no effect on testosterone secretion or on the expression of steroidogenic enzymes by Leydig cells. After irradiation, p53 phosphorylated on serine 15 was detected from 1-24 h in all cell types. This activation of p53 was accompanied by an increase in mRNA levels of proapoptotic factors Bax and Puma, whereas that of antiapoptotic Bcl-2 remained unchanged. P21, which is responsible for cell cycle arrest, was also up-regulated 6, 30, and 72 h after irradiation. Finally, when we added pifithrin-alpha, a specific inhibitor of p53 functions, a significant decrease in irradiation-induced apoptosis in both germ and Sertoli cells was observed, indicating the involvement of the p53 pathway in irradiation-induced apoptosis. CONCLUSIONS: This study demonstrated here for the first time the great sensitivity of human fetal germ cells to genotoxic stress caused by ionizing radiation.


Assuntos
Apoptose/efeitos da radiação , Tolerância a Radiação/fisiologia , Testículo/embriologia , Testículo/efeitos da radiação , Caspase 3/metabolismo , Relação Dose-Resposta à Radiação , Idade Gestacional , Humanos , Antígeno Ki-67/metabolismo , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Células Intersticiais do Testículo/efeitos da radiação , Masculino , Técnicas de Cultura de Órgãos , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Células de Sertoli/efeitos da radiação , Espermatozoides/citologia , Espermatozoides/metabolismo , Espermatozoides/efeitos da radiação , Testículo/citologia , Testículo/metabolismo , Testosterona/metabolismo , Proteína Supressora de Tumor p53/metabolismo
9.
J Lipid Res ; 48(3): 726-32, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17130283

RESUMO

We describe a novel approach to the relative quantification of phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)] and its application to measure, in neutrophils, the activation of phosphoinositide 3-kinase (PI3K). This protein-lipid overlay-based assay allowed us to confirm and extend the observations, first, that N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulation of primed human neutrophils leads to a transient and biphasic increase in PtdIns(3,4,5)P(3) levels and, second, that the ability of fMLP to stimulate PtdIns(3,4,5)P(3) accumulation in neutrophils isolated from mice carrying a Ras-insensitive ('DASAA') knock-in of PI3Kgamma (p110gamma(DASAA/DASAA)) is substantially dependent on the Ras binding domain of PI3Kgamma.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase , Humanos , Immunoblotting , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Spodoptera
10.
Reprod Toxicol ; 23(2): 158-64, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17157474

RESUMO

Any toxicant that affects Sertoli cell development can potentially disturb male fertility. So far, the effects of organochlorine compounds have been poorly investigated in male. Here, we studied the effects of dichlorodiphenyltrichloroethane (DDT), an organochloride pesticide, on Sertoli cells. DDT inhibited the cAMP response to follicle-stimulating hormone (FSH), the major endocrine control of Sertoli cell development, and to a beta2-agonist, isoproterenol. DDT exposure decreased the level of FSH binding sites. Direct adenylyl cyclase activation by Forskolin was unaltered by DDT, while the activation of Galphas by cholera toxin was decreased by DDT. The DDT inhibitory effect on the FSH response was also observed in Ser W3 cells, a Sertoli cell-derived immortalized cell line. All these effects were reproduced by the lipophilic aromatic bisphenol A but not by structurally unrelated CisPlatin. In conclusion, these results are a first step in understanding the molecular basis of DDT deleterious effects in spermatogenesis.


Assuntos
DDT/toxicidade , Praguicidas/toxicidade , Receptores do FSH/efeitos dos fármacos , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Compostos Benzidrílicos , Linhagem Celular Transformada , Toxina da Cólera/farmacologia , Cisplatino/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Antagonismo de Drogas , Isoproterenol/farmacologia , Masculino , Fenóis/farmacologia , Ratos , Receptores do FSH/metabolismo , Células de Sertoli/metabolismo
11.
Proc Natl Acad Sci U S A ; 103(32): 11987-92, 2006 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-16877546

RESUMO

Mutation of the transcription factor and tumor suppressor gene WT1 results in a range of genitourinary anomalies in humans, including 46,XY gonadal dysgenesis, indicating that WT1 plays a critical role in sex determination. However, because knockout of Wt1 in mice results in apoptosis of the genital ridge, it is unknown whether WT1 is required for testis development after the initial steps of sex determination. To address this question, we generated a mouse strain carrying a Wt1 conditional knockout allele and ablated Wt1 function specifically in Sertoli cells by embryonic day 14.5, several days after testis determination. Wt1 knockout resulted in disruption of developing seminiferous tubules and subsequent progressive loss of Sertoli cells and germ cells such that postnatal mutant testes were almost completely devoid of these cell types and were severely hypoplastic. Thus, Wt1 is essential for the maintenance of Sertoli cells and seminiferous tubules in the developing testes. Of particular note, expression of the testis-determining gene Sox9 in mutant Sertoli cells was turned off at embryonic day 14.5 after Wt1 ablation, suggesting that WT1 regulates Sox9, either directly or indirectly, after Sry expression ceases. Our data, along with previous work demonstrating the role of Wt1 at early stages of gonadal development, thus indicate that Wt1 is essential at multiple steps in testicular development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Grupo de Alta Mobilidade/fisiologia , Testículo/embriologia , Fatores de Transcrição/fisiologia , Proteínas WT1/fisiologia , Tumor de Wilms/genética , Alelos , Animais , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mutação , Fatores de Transcrição SOX9 , Células de Sertoli/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas WT1/genética
12.
Mol Endocrinol ; 19(7): 1812-20, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15774499

RESUMO

FSH is a major hormonal input that drives Sertoli cells to their fully differentiated function in male reproduction. It is a physiologically important issue to define how FSH mediates its effects at the cellular level to regulate gene expression. FSH biological activities are transduced via a seven-spanned transmembrane receptor, the FSH-R, primarily leading to cAMP-dependent protein kinase A (PKA) activation and cAMP response element binding protein-mediated transcriptional responses. Nevertheless, the intracellular mechanisms interacting with PKA to control Sertoli cell differentiation by FSH are still incompletely defined. Here, we report that, in primary cultures of Sertoli cells isolated from prepubertal rats, FSH enhanced p70S6K enzymatic activity, in a PKA-dependent manner. p70S6K was constitutively phosphorylated on Thr 389, in a manner sensitive to inhibitors of phosphatidyl-inositide-3 kinase and mammalian target of rapamycin. But FSH could not enhance p70S6K phosphorylation on Thr 389. Rather, the hormone induced the dephosphorylation of Thr 421/Ser 424, located in the autoinhibitory domain of p70S6K, in a PKA-dependent manner. Consistently, FSH-induced phosphorylation of the S6 ribosomal protein, a cellular substrate of p70S6K, required PKA activity. In conclusion, these results show that FSH triggers unexpected regulations of p70S6K by dephosphorylation of Thr 421/Ser 424 mediated by PKA, and stimulates S6 phosphorylation, in Sertoli cells.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônio Foliculoestimulante/fisiologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Células de Sertoli/enzimologia , Animais , Ativação Enzimática , Hormônio Foliculoestimulante/farmacologia , Masculino , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteínas Quinases/efeitos dos fármacos , Ratos , Serina/metabolismo , Células de Sertoli/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Treonina/metabolismo
13.
Curr Pharm Des ; 10(5): 449-69, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14965333

RESUMO

The testis is devoted to two important tasks: haploid cell production and sexual steroid synthesis. A number of highly sophisticated and unique strategies operate during spermatogenesis, a process crucial for reproduction, heredity and evolution. It is particularly important to decipher the underlying molecular mechanisms whose function can be perverted in pathological situations, such as infertility and testicular cancers, which represent an increasing biomedical issue today. This review summarises the currently available data concerning some key molecular components that are altered or potentially involved in male infertility and testicular tumors, with the aim of defining some common "hot spots". We particularly focused on genetically engineered in vivo models in which testicular functions are altered and we pinpointed to the potential involvement of the targeted genes in testicular pathologies. Those molecular mechanisms peculiar to the male gonad can be envisioned as a basis for the design of novel drugs potentially dedicated to testicular dysfunction.


Assuntos
Infertilidade Masculina/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Testiculares/metabolismo , Animais , Células Germinativas/citologia , Células Germinativas/crescimento & desenvolvimento , Humanos , Infertilidade Masculina/patologia , Masculino , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA