Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Toxicology ; 508: 153919, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39137829

RESUMO

Nephrotoxicity, including electrolytic disorders and acute kidney injury (AKI), limits the clinical dosage and utility of platinated antineoplastics such as cisplatin. Cisplatin nephrotoxicity embodies a tubulopathy involving the medullary S2 and S3 segments of the proximal and the distal tubules. Higher dosage extends damage over the cortical S1 segment and intensifies overall injury. However, the standard diagnosis based on plasma creatinine as well as novel injury biomarkers lacks enough pathophysiological specificity. Further granularity in the detection of renal injury would help understand the implications of individual damage patterns needed for personalized patient handling. In this article, we studied the association of urinary ganglioside GM2 activator protein (GM2AP) with the patterns of tubular damage produced by 5 and 10 mg/kg cisplatin in rats. Our results show that GM2AP appears in the urine only following damage to the cortical segment of the proximal tubule. The information provided by GM2AP is not redundant with but distinct and complementary to that provided by urinary neutrophil gelatinase-associated lipocalin (NGAL). Similarly, treatment with 150 mg/kg/day gentamicin damages the renal cortex and increases GM2AP urinary excretion; whereas renal ischemia, which does not affect the cortex, has no effect on GM2AP. Because of the key role of the cortical proximal tubule in renal function, we contend GM2AP as a potential diagnostic biomarker to stratify AKI patients according to the underlying damage and follow their evolution and prognosis. Prospectively, urinary GM2AP may help grade the severity of platinated antineoplastic nephrotoxicity by forming part of a non-invasive liquid biopsy.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Biomarcadores , Cisplatino , Proteína Ativadora de G(M2) , Córtex Renal , Cisplatino/toxicidade , Animais , Masculino , Ratos , Biomarcadores/urina , Antineoplásicos/toxicidade , Córtex Renal/efeitos dos fármacos , Córtex Renal/patologia , Córtex Renal/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/urina , Gentamicinas/toxicidade , Ratos Sprague-Dawley , Lipocalina-2/urina , Índice de Gravidade de Doença
2.
Biomed Pharmacother ; 178: 117152, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047420

RESUMO

Acute kidney injury (AKI) is the most common complication of cardiac surgery. Cardiac surgery-associated AKI (CSA-AKI) is caused by systemic and renal hemodynamic impairment and parenchymal injury. Prophylaxis of CSA-AKI remains an unmet priority, for which preventive strategies based on drug therapies, hydration procedures, and remote ischemic preconditioning (RIPC) have been tested in pre-clinical and clinical studies, with variable success. Contradicting reports and scarce or insufficiently pondered information have blurred conclusions. Therefore, with an aim to contribute to consolidating the available information, we carried out a wide scope, pan-comparative meta-analysis including the accessible information about the most relevant nephroprotective approaches assayed. After a thorough examination of 1892 documents retrieved from PubMed and Web of Science, 150 studies were used for the meta-analysis. Individual odds ratios of efficacy at reducing AKI incidence, need for dialysis, and plasma creatinine elevation were obtained for each alleged protectant. Also, the combined class effect of drug families and protective strategies was also meta-analyzed. Our results show that no drug family or procedure affords substantial protection against CSA-AKI. Only, a mild but significant reduction in the incidence of CSA-AKI by preemptive treatment with dopaminergic and adrenergic drugs, vasodilators, and the RIPC technique. The integrated analysis suggests that single-drug approaches are unlikely to cope with the variety of individual pathophysiological scenarios potentially underlying CSA-AKI. Accordingly, a theragnostic approach involving the etiopathological diagnosis of kidney frailty is necessary to guide research towards the development of pharmacological combinations concomitantly and effectively addressing the key mechanisms of CSA-AKI.


Assuntos
Injúria Renal Aguda , Procedimentos Cirúrgicos Cardíacos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/etiologia , Humanos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Precondicionamento Isquêmico/métodos , Resultado do Tratamento
3.
J Clin Med ; 11(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956190

RESUMO

Diagnosis of cardiac surgery-associated acute kidney injury (CSA-AKI), a syndrome of sudden renal dysfunction occurring in the immediate post-operative period, is still sub-optimal. Standard CSA-AKI diagnosis is performed according to the international criteria for AKI diagnosis, afflicted with insufficient sensitivity, specificity, and prognostic capacity. In this article, we describe the limitations of current diagnostic procedures and of the so-called injury biomarkers and analyze new strategies under development for a conceptually enhanced diagnosis of CSA-AKI. Specifically, early pathophysiological diagnosis and patient stratification based on the underlying mechanisms of disease are presented as ongoing developments. This new approach should be underpinned by process-specific biomarkers including, but not limited to, glomerular filtration rate (GFR) to other functions of renal excretion causing GFR-independent hydro-electrolytic and acid-based disorders. In addition, biomarker-based strategies for the assessment of AKI evolution and prognosis are also discussed. Finally, special focus is devoted to the novel concept of pre-emptive diagnosis of acquired risk of AKI, a premorbid condition of renal frailty providing interesting prophylactic opportunities to prevent disease through diagnosis-guided personalized patient handling. Indeed, a new strategy of risk assessment complementing the traditional scores based on the computing of risk factors is advanced. The new strategy pinpoints the assessment of the status of the primary mechanisms of renal function regulation on which the impact of risk factors converges, namely renal hemodynamics and tubular competence, to generate a composite and personalized estimation of individual risk.

4.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408856

RESUMO

Nephrotoxicity is a major cause of intrinsic acute kidney injury (AKI). Because renal tissue damage may occur independently of a reduction in glomerular filtration rate and of elevations in plasma creatinine concentration, so-called injury biomarkers have been proposed to form part of diagnostic criteria as reflective of tubular damage independently of renal function status. We studied whether the urinary level of NGAL, KIM-1, GM2AP, t-gelsolin, and REGIIIb informed on the extent of tubular damage in rat models of nephrotoxicity, regardless of the etiology, moment of observation, and underlying pathophysiology. At a time of overt AKI, urinary biomarkers were measured by Western blot or ELISA, and tubular necrosis was scored from histological specimens stained with hematoxylin and eosin. Correlation and regression studies revealed that only weak relations existed between biomarkers and tubular damage. Due to high interindividual variability in the extent of damage for any given biomarker level, urinary injury biomarkers did not necessarily reflect the extent of the underlying tissue injury in individual rats. We contended, in this work, that further pathophysiological contextualization is necessary to understand the diagnostic significance of injury biomarkers before they can be used for renal tubular damage severity stratification in the context of nephrotoxic and, in general, intrinsic AKI.


Assuntos
Injúria Renal Aguda , Rim , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Animais , Biomarcadores , Creatinina , Taxa de Filtração Glomerular , Rim/patologia , Lipocalina-2/urina , Ratos
5.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209106

RESUMO

Quercetin, a flavonoid with promising therapeutic potential, has been shown to protect from cisplatin nephrotoxicity in rats following intraperitoneal injection, but its low bioavailability curtails its prospective clinical utility in oral therapy. We recently developed a micellar formulation (P-quercetin) with enhanced solubility and bioavailability, and identical nephroprotective properties. As a first aim, we herein evaluated the oral treatment with P-quercetin in rats, which displayed no nephroprotection. In order to unravel this discrepancy, quercetin and its main metabolites were measured by HPLC in the blood and urine after intraperitoneal and oral administrations. Whilst quercetin was absorbed similarly, the profile of its metabolites was different, which led us to hypothesize that nephroprotection might be exerted in vivo by a metabolic derivate. Consequently, we then aimed to evaluate the cytoprotective capacity of quercetin and its main metabolites (quercetin 3-O-glucoside, rutin, tamarixetin, isorhamnetin and quercetin 3-O-glucuronide) against cisplatin toxicity, in HK-2 and NRK-52E tubular cell lines. Cells were incubated for 6 h with quercetin, its metabolites or vehicle (pretreatment), and subsequently 18 h in cotreatment with 10-300 µM cisplatin. Immediately after treatment, cell cultures were subject to the MTT technique as an index of cytotoxicity and photographed under light microscopy for phenotypic assessment. Quercetin afforded no direct cytoprotection and quercetin-3-O-glucuronide was the only metabolite partially preventing the effect of cisplatin in cultured tubule cells. Our results identify a metabolic derivative of quercetin contributing to its nephroprotection and prompt to further explore exogenous quercetin-3-O-glucuronide in the prophylaxis of tubular nephrotoxicity.


Assuntos
Cisplatino/farmacologia , Citoproteção/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Quercetina/análogos & derivados , Animais , Linhagem Celular , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cisplatino/efeitos adversos , Taxa de Filtração Glomerular , Testes de Função Renal/métodos , Túbulos Renais/citologia , Quercetina/farmacologia , Ratos
6.
J Clin Med ; 10(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768464

RESUMO

Contrast-induced nephropathy (CIN) is a complication associated with the administration of contrast media (CM). The CIN diagnosis is based on creatinine, a biomarker late and insensitive. The objective proposed was to evaluate the ability of novel biomarkers to detect patients susceptible to suffering CIN before CM administration. The study was carried out with patients undergoing cardiac catheterization involving CM. Patients were divided into two groups: (1) CIN, patients who developed this pathology; (2) control, patients who did not suffer CIN. Prior to the administration of CM, urine samples were collected to measure proteinuria, N-acetyl-ß-d-glucosaminidase, neutrophil gelatinase-associated lipocalin and kidney injury molecule-1, albumin, transferrin, t-gelsolin and GM2 ganglioside activator protein (GM2AP). The risk factors advanced age, low body mass index and low estimated glomerular filtration rate; and the urinary biomarkers albumin, transferrin and GM2AP showed significant predictive capacity. Of all of them, albuminuria demonstrated the highest diagnostic power. When a cutoff point was established for albuminuria at values still considered subclinical (10-30 µg/mg Cru), it was found that there was a high incidence of CIN (40-75%). Therefore, albuminuria could be applied as a new diagnostic tool to prevent and predict CIN with P4 medicine criteria, independently of risk factors and comorbidities.

7.
Sci Rep ; 11(1): 21183, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34707157

RESUMO

Acute kidney injury (AKI) is a risk factor for new AKI episodes, chronic kidney disease, cardiovascular events and death, as renal repair may be deficient and maladaptive, and activate proinflammatory and profibrotic signals. AKI and AKI recovery definitions are based on changes in plasma creatinine, a parameter mostly associated to glomerular filtration, but largely uncoupled from renal tissue damage. The evolution of structural and functional repair has been incompletely described. We thus aimed at identifying subclinical sequelae persisting after recovery from cisplatin-induced AKI in rats. Compared to controls, after plasma creatinine recovery, post-AKI kidneys showed histological alterations and attendant susceptibility to new AKI episodes. Tubular function (assessed by the furosemide stress test, FST) also remained affected. Lingering parenchymal and functional subclinical alterations were paralleled by tapering, but abnormally high levels of urinary albumin, transferrin, insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor of metalloproteinases-2 (TIMP-2) and, especially, the [TIMP-2]*[IGFBP7] product. As subclinical surrogates of incomplete renal recovery, the FST and the urinary [TIMP-2]*[IGFBP7] product provide two potential diagnostic tools to monitor the sequelae and kidney vulnerability after the apparent recovery from AKI.


Assuntos
Injúria Renal Aguda/urina , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/urina , Inibidor Tecidual de Metaloproteinase-2/urina , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Animais , Antineoplásicos/toxicidade , Biomarcadores/urina , Cisplatino/toxicidade , Rim/efeitos dos fármacos , Rim/patologia , Rim/fisiopatologia , Masculino , Ratos , Ratos Wistar
8.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450917

RESUMO

The antioxidant flavonoid quercetin has been shown to prevent nephrotoxicity in animal models and in a clinical study and is thus a very promising prophylactic candidate under development. Quercetin solubility is very low, which handicaps clinical application. The aim of this work was to study, in rats, the bioavailability and nephroprotective efficacy of a micellar formulation of Pluronic F127-encapsulated quercetin (P-quercetin), with improved hydrosolubility. Intraperitoneal administration of P-quercetin leads to an increased plasma concentration and bioavailability of quercetin compared to the equimolar administration of natural quercetin. Moreover, P-quercetin retains overall nephroprotective properties, and even slightly improves some renal function parameters, when compared to natural quercetin. Specifically, P-quercetin reduced the increment in plasma creatinine (from 3.4 ± 0.5 to 1.2 ± 0.3 mg/dL) and urea (from 490.9 ± 43.8 to 184.1 ± 50.1 mg/dL) and the decrease in creatinine clearance (from 0.08 ± 0.02 to 0.58 ± 0.19 mL/min) induced by the nephrotoxic chemotherapeutic drug cisplatin, and it ameliorated histological evidence of tubular damage. This new formulation with enhanced kinetic and biopharmaceutical properties will allow for further exploration of quercetin as a candidate nephroprotector at lower dosages and by administration routes oriented towards its clinical use.


Assuntos
Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Rim/efeitos dos fármacos , Micelas , Substâncias Protetoras/farmacologia , Quercetina/farmacologia , Antioxidantes/química , Disponibilidade Biológica , Biomarcadores , Composição de Medicamentos , Imuno-Histoquímica , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Substâncias Protetoras/química , Quercetina/química , Solubilidade
9.
Transl Res ; 231: 76-91, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33253980

RESUMO

Acute kidney injury (AKI) diagnosis relies on plasma creatinine concentration (Crpl), a relatively insensitive, surrogate biomarker of glomerular filtration rate that increases only after significant damage befalls. However, damage in different renal structures may occur without increments in Crpl, a condition known as subclinical AKI. Thus, detection of alterations in other aspects of renal function different from glomerular filtration rate must be included in an integral diagnosis of AKI. With this aim, we adapted to and validated in rats (for preclinical research) the furosemide stress test (FST), a tubular function test hitherto performed only in humans. We also tested its sensitivity in detecting subclinical tubular alterations. In particular, we predisposed rats to AKI with 3 mg/kg cisplatin and subsequently subjected them to a triggering insult (ie, 50 mg/kg/d gentamicin for 6 days) that had no effect on nonpredisposed animals but caused an overt AKI in predisposed rats. The FST was performed immediately before adding the triggering insult. Predisposed animals showed a reduced response to the FST (namely, reduced furosemide-induced diuresis and K+ excretion), whereas nonpredisposed animals showed no alteration, compared to the controls. Computational modeling of epithelial transport of solutes and water along the nephrons applied to experimental data suggested that proximal tubule transport was only minimally reduced, the sodium-chloride symporter was upregulated by 50%, and the renal outer medullary potassium channel was downregulated by 85% in predisposed animals. In conclusion, serial coupling of the FST and computational modeling may be used to detect and localize subclinical tubular alterations.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Furosemida/farmacologia , Animais , Antibacterianos/toxicidade , Antineoplásicos/toxicidade , Cisplatino/toxicidade , Simulação por Computador , Gentamicinas/toxicidade , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Ratos
10.
Artigo em Inglês | MEDLINE | ID: mdl-33013677

RESUMO

Obesity is a major factor in contemporary clinical practice in nephrology. Obesity accelerates the progression of both diabetic and non-diabetic chronic kidney disease and, in renal transplantation, both recipient and donor obesity increase the risk of allograft complications. Obesity is thus a major driver of renal disease progression and a barrier to deceased and living donor kidney transplantation. Large observational studies have highlighted that metabolic surgery reduces the incidence of albuminuria, slows chronic kidney disease progression, and reduces the incidence of end-stage kidney disease over extended follow-up in people with and without type 2 diabetes. The surgical treatment of obesity and its metabolic sequelae has therefore the potential to improve management of diabetic and non-diabetic chronic kidney disease and aid in the slowing of renal decline toward end-stage kidney disease. In the context of patients with end-stage kidney disease, although complications of metabolic surgery are higher, absolute event rates are low and it remains a safe intervention in this population. Pre-transplant metabolic surgery increases access to kidney transplantation in people with obesity and end-stage kidney disease. Metabolic surgery also improves management of metabolic complications post-kidney transplantation, including new-onset diabetes. Procedure selection may be critical to mitigate the risks of oxalate nephropathy and disruption to immunosuppressant pharmacokinetics. Metabolic surgery may also have a role in the treatment of donor obesity, which could increase the living kidney donor pool with potential downstream impact on kidney paired exchange programmes. The present paper provides a comprehensive coverage of the literature concerning renal outcomes in clinical studies of metabolic surgery and integrates findings from relevant mechanistic pre-clinical studies. In so doing the key unanswered questions for the field are brought to the fore for discussion.


Assuntos
Cirurgia Bariátrica/métodos , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/prevenção & controle , Falência Renal Crônica/prevenção & controle , Transplante de Rim/métodos , Obesidade/cirurgia , Insuficiência Renal Crônica/prevenção & controle , Nefropatias Diabéticas/etiologia , Humanos , Falência Renal Crônica/etiologia , Obesidade/complicações , Insuficiência Renal Crônica/etiologia
11.
Sci Rep ; 10(1): 11599, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32665654

RESUMO

Deficient recovery from acute kidney injury (AKI) has immediate and long-term health, clinical and economic consequences. Pre-emptive recovery estimation may improve nephrology referral, optimize decision making, enrollment in trials, and provide key information for subsequent clinical handling and follow-up. For this purpose, new biomarkers are needed that predict outcome during the AKI episode. We hypothesized that damage pattern-specific biomarkers are expected to more closely associate to outcome within distinct subpopulations (i.e. those affected by specific pathological processes determining a specific outcome), as biomarker pleiotropy (i.e. associated to phenomena unrelated to AKI) introduced by unselected, heterogeneous populations may blur statistics. A panel of urinary biomarkers was measured in patients with AKI and their capacity to associate to normal or abnormal recovery was studied in the whole cohort or after sub-classification by AKI etiology, namely pre-renal and intrinsic AKI. A combination of urinary GM2AP and TCP1-eta best associates with recovery from AKI, specifically within the sub-population of renal AKI patients. This two-step strategy generates a multidimensional space in which patients with specific characteristics (i.e. renal AKI patients with good or bad prognosis) can be identified based on a collection of biomarkers working serially, applying pathophysiology-driven criteria to estimate AKI recovery, to facilitate pre-emptive and personalized handling.


Assuntos
Injúria Renal Aguda/urina , Biomarcadores/urina , Chaperonina com TCP-1/urina , Proteína Ativadora de G(M2)/urina , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Linhagem da Célula/genética , Feminino , Humanos , Rim/patologia , Masculino , Pessoa de Meia-Idade
12.
Sci Rep ; 10(1): 9383, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523017

RESUMO

Cardiovascular diseases are associated to risk factors as obesity, hypertension and diabetes. The transforming growth factor-ß1 receptors ALK1 and endoglin regulate blood pressure and vascular homeostasis. However, no studies relate the association of ALK1 and endoglin polymorphisms with cardiovascular risk factors. We analysed the predictive value of the ALK1 and endoglin polymorphisms on cardiovascular target organ damage in hypertensive and diabetic patients in 379 subjects with or without hypertension and diabetes in a Primary Care setting. The ALK1 rs2071219 polymorphism (AA genotype) is associated with a lower presence of diabetic retinopathy and with the absence of altered basal glycaemia. Being carrier of the ALK1 rs3847859 polymorphism (G allele) is associated with lower basal heart rate and with higher LDL-cholesterol levels. The endoglin rs3739817 polymorphism (AA genotype) is associated with higher levels of LDL-cholesterol, and being carrier of the endoglin rs10987759 polymorphism (C allele) is associated with higher haemoglobin levels and with an increased heart rate. Summarizing, several ALK1 and endoglin gene polymorphisms increase the risk of cardiovascular events. The analysis of these polymorphisms in populations at risk, in combination with the determination of other parameters and biomarkers, could implement the diagnosis and prognosis of susceptibility to cardiovascular damage.


Assuntos
Receptores de Activinas Tipo II/genética , Diabetes Mellitus/genética , Endoglina/genética , Genótipo , Hipertensão/genética , Idoso , Idoso de 80 Anos ou mais , Quinase do Linfoma Anaplásico , Endoglina/metabolismo , Feminino , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Prognóstico , Risco , Fator de Crescimento Transformador beta1/metabolismo
13.
Toxicol Sci ; 175(1): 75-86, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32110797

RESUMO

Neutrophil gelatinase-associated lipocalin (NGAL) is a secreted low-molecular weight iron-siderophore-binding protein. NGAL overexpression in injured tubular epithelia partly explains its utility as a sensitive and early urinary biomarker of acute kidney injury (AKI). Herein, we extend mechanistic insights into the source and kinetics of urinary NGAL excretion in experimental AKI. Three models of experimental AKI were undertaken in adult male Wistar rats; renal ischemia-reperfusion injury (IRI) and gentamicin (G) and cisplatin (Cisp) nephrotoxicity. Alongside standard histological and biochemical assessment of AKI, urinary NGAL excretion rate, plasma NGAL concentration, and renal NGAL mRNA/protein expression were assessed. In situ renal perfusion studies were undertaken to discriminate direct shedding of NGAL to the urine from addition of NGAL to the urine secondary to alterations in the tubular handling of glomerular filtrate-derived protein. Renal NGAL expression and urinary excretion increased in experimental AKI. In acute studies in both the IRI and G models, direct renal perfusion with Kreb's buffer eliminated urinary NGAL excretion. Addition of exogenous NGAL to the Kreb's buffer circuit, reestablishment of perfusion with systemic blood or reperfusion with renal vein effluent restored high levels of urinary NGAL excretion. Urinary NGAL excretion in AKI arises in large proportion from reduced reabsorption from the glomerular filtrate. Hence, subclinical cellular dysfunction could increase urinary NGAL, particularly in concert with elevations in circulating prerenal NGAL and/or pharmacological inhibition of tubular reabsorption. More granular interpretation of urinary NGAL measurements could optimize the scope of its clinical utility as a biomarker of AKI.


Assuntos
Injúria Renal Aguda/urina , Túbulos Renais/metabolismo , Lipocalina-2/urina , Reabsorção Renal , Traumatismo por Reperfusão/urina , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/fisiopatologia , Animais , Biomarcadores/urina , Cisplatino , Modelos Animais de Doenças , Gentamicinas , Túbulos Renais/fisiopatologia , Lipocalina-2/genética , Masculino , Ratos Wistar , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia , Fatores de Tempo , Regulação para Cima
14.
Eur J Clin Pharmacol ; 76(1): 23-33, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31677116

RESUMO

INTRODUCTION: Cisplatin is a potent antineoplastic drug that has been widely used to treat a number of solid tumors. However, a high incidence of renal damage observed in patients has led researchers to search for alternate strategies that prevent or at least reduce the cisplatin-induced nephrotoxicity. The objective of the present study was to conduct a systematic review and a subsequent meta-analysis to evaluate and identify compounds with effective antitumor activity and lesser side effects that could provide protection against cisplatin-induced nephrotoxicity. METHODS: The study included all placebo-controlled trials published up to December 2017 that met the inclusion criteria. A total of 22 articles were finally included to extract the following information: number of patients, doses of cisplatin and protectant, qualitative (acute kidney injury incidence) and quantitative (plasma creatinine, blood urea nitrogen, and creatinine clearance) indicators of renal function. The odds ratio or the mean difference (95% confidence interval) of each parameter was calculated for each study and group of studies. RESULTS: The results of this meta-analysis show that there is great variability in the nephroprotective capacity of a variety of products evaluated. Of all the compounds tested, only magnesium sulfate and cystone were found to exert protective effects. However, more studies need to be conducted to confirm these results. CONCLUSIONS: The administration of 1 g of Mg i.v. seems to be the best strategy for the prevention of cisplatin nephrotoxicity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/epidemiologia , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Neoplasias/tratamento farmacológico , Creatinina/sangue , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Rim/efeitos dos fármacos
15.
Biomed Pharmacother ; 121: 109684, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810121

RESUMO

Nephrotoxicity is an important limitation to the clinical use of many drugs and contrast media. Drug nephrotoxicity occurs in acute, subacute and chronic manifestations ranging from glomerular, tubular, vascular and immunological phenotypes to acute kidney injury. Pre-emptive risk assessment of drug nephrotoxicity poses an urgent need of precision medicine to optimize pharmacological therapies and interventional procedures involving nephrotoxic products in a preventive and personalized manner. Biomarkers of risk have been identified in animal models, and risk scores have been proposed, whose clinical use is abated by their reduced applicability to specific etiological models or clinical circumstances. However, our present data suggest that the urinary level of transferrin may be indicative of risk of renal damage, where risk is induced by subclinical tubular alterations regardless of etiology. In fact, urinary transferrin pre-emptively correlates with the subsequent renal damage in animal models in which risk has been induced by drugs and toxins affecting the renal tubules (i.e. cisplatin, gentamicin and uranyl nitrate); whereas transferrin shows no relation with the risk posed by a drug affecting renal hemodynamics (i.e. cyclosporine A). Our experiments also show that transferrin increases in the urine in the risk state (i.e. prior to the damage) precisely as a consequence of reduced tubular reabsorption. Finally, urinary transferrin pre-emptively identifies subpopulations of oncological and cardiac patients at risk of nephrotoxicity. In perspective, urinary transferrin might be further explored as a wider biomarker of an important mechanism of predisposition to renal damage induced by insults causing subclinical tubular alterations.


Assuntos
Túbulos Renais/patologia , Transferrina/urina , Acetilglucosaminidase/urina , Animais , Biomarcadores/urina , Meios de Contraste/efeitos adversos , Creatinina/sangue , Suscetibilidade a Doenças , Feminino , Humanos , Nefropatias/induzido quimicamente , Nefropatias/urina , Lipocalina-2/urina , Masculino , Pessoa de Meia-Idade , Platina/efeitos adversos , Ratos Wistar , Fatores de Risco , Ureia/sangue
16.
Toxicol Sci ; 174(1): 3-15, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31825490

RESUMO

Acute kidney injury (AKI) is a serious syndrome with increasing incidence and health consequences, and high mortality rate among critically ill patients. Acute kidney injury lacks a unified definition, has ambiguous semantic boundaries, and relies on defective diagnosis. This, in part, is due to the absence of biomarkers substratifying AKI patients into pathophysiological categories based on which prognosis can be assigned and clinical treatment differentiated. For instance, AKI involving acute tubular necrosis (ATN) is expected to have a worse prognosis than prerenal, purely hemodynamic AKI. However, no biomarker has been unambiguously associated with tubular cell death or is able to provide etiological distinction. We used a cell-based system to identify TCP1-eta in the culture medium as a noninvasive marker of damaged renal tubular cells. In rat models of AKI, TCP1-eta was increased in the urine co-relating with renal cortical tubule damage. When kidneys from ATN rats were perfused in situ with Krebs-dextran solution, a portion of the urinary TCP1-eta protein content excreted into urine disappeared, and another portion remained within the urine. These results indicated that TCP1-eta was secreted by tubule cells and was not fully reabsorbed by the damaged tubules, both effects contributing to the increased urinary excretion. Urinary TCP1-eta is found in many etiologically heterogeneous AKI patients, and is statistically higher in patients partially recovered from severe AKI. In conclusion, urinary TCP1-eta poses a potential, substratifying biomarker of renal cortical damage associated with bad prognosis.


Assuntos
Injúria Renal Aguda/urina , Chaperonina com TCP-1/urina , Túbulos Renais/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/fisiopatologia , Animais , Apoptose , Biomarcadores/urina , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Diagnóstico Precoce , Túbulos Renais/patologia , Túbulos Renais/fisiopatologia , Masculino , Valor Preditivo dos Testes , Prognóstico , Ratos Wistar , Eliminação Renal , Urinálise
17.
Int J Mol Sci ; 20(19)2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597315

RESUMO

Iodinated contrast media (CM) are the leading cause of acute renal failure of toxic origin. Between 21% and 50% of patients that receive them develop contrast-induced nephropathy (CIN). All prophylactic measures used so far have failed to provide effective prevention. Since oxidative stress is involved in the damage, a possible preventive strategy could be the administration of antioxidant substances, such as quercetin. This compound has shown renoprotective effects in experimental studies. The aim of this study was to evaluate whether quercetin may be helpful in preventing CIN in patients undergoing coronary catheterization. A clinical phase II study was conducted. Patients were distributed in two groups, namely, CM (patients who only received contrast media) and CM+Q (patients who were pretreated with quercetin orally for 3-5 days). Results showed less incidence of CIN in the CM+Q group, possibly due to glomerular protection, evidenced by a lower increase in serum creatinine and albuminuria; and a lower decrease in the glomerular filtration rate (GFR). Furthermore, in this group, the relative risk of developing CIN observed in patients that received a high dose of contrast media was inferior. In conclusion, this is the first study that demonstrates that quercetin is a promising safe candidate in preventing CIN.


Assuntos
Meios de Contraste/efeitos adversos , Nefropatias/etiologia , Nefropatias/prevenção & controle , Substâncias Protetoras/farmacologia , Quercetina/farmacologia , Idoso , Biomarcadores , Meios de Contraste/administração & dosagem , Meios de Contraste/classificação , Creatinina/metabolismo , Feminino , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Nefropatias/diagnóstico , Nefropatias/metabolismo , Masculino , Substâncias Protetoras/uso terapêutico , Quercetina/uso terapêutico
18.
Transplantation ; 102(10): e404-e412, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30247450

RESUMO

BACKGROUND: Cold ischemia-reperfusion injury is unavoidable during organ transplantation, and prolonged preservation is associated with poorer function recovery. Cardiotrophin-1 (CT-1) is an IL-6 family cytokine with cytoprotective properties. This preclinical study in rats tested whether CT-1 mitigates cold renal ischemia-reperfusion injury in the context of the transplantation of long-time preserved kidneys. METHODS: Kidneys were flushed with cold (4°C) University of Wisconsin solution containing 0.2 µg/mL CT-1 and stored for several periods of time at 4°C in the same solution. In a second approach, kidneys were first cold-preserved for 6 hours and then were perfused with University of Wisconsin solution containing CT-1 (0, 16, 32, or 64 µg/mL) and further cold-preserved. Organ damage markers were measured in the kidneys at the end of the storage period. For renal transplantation, recipient consanguineous Fischer rats underwent bilateral nephrectomy and received a previously cold-preserved (24 hours) kidney as described above. Survival and creatinine clearance were monitored over 30 days. RESULTS: Cardiotrophin-1 in perfusion and preservation fluids reduced oxidative stress markers (superoxide anion and inducible nitric oxide synthase), inflammation markers (NF-κB and tumor necrosis factor-α), and vascular damage (vascular cell adhesion molecule-1) and activated leukemia inhibitory factor receptor and STAT-3 survival signaling. Transplantation of kidneys cold-preserved with CT-1 increased rat survival and renal function (ie, lower plasma creatinine and higher creatinine clearance) and improved kidney damage markers after transplantation (ie, lower superoxide anion, tumor necrosis factor-α, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 and higher NF-κB). CONCLUSIONS: Cardiotrophin-1 represents a novel therapeutic strategy to reduce ischemia-reperfusion and cold preservation injury to rescue suboptimal kidneys and, consequently, to improve the clinical outcomes of renal transplantation.


Assuntos
Citocinas/uso terapêutico , Transplante de Rim/efeitos adversos , Preservação de Órgãos/métodos , Traumatismo por Reperfusão/prevenção & controle , Coleta de Tecidos e Órgãos/métodos , Adenosina/química , Aloenxertos/irrigação sanguínea , Aloenxertos/efeitos dos fármacos , Alopurinol/química , Animais , Isquemia Fria/efeitos adversos , Citocinas/farmacologia , Modelos Animais de Doenças , Glutationa/química , Sobrevivência de Enxerto/efeitos dos fármacos , Humanos , Insulina/química , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Testes de Função Renal , Transplante de Rim/métodos , Masculino , Nefrectomia , Soluções para Preservação de Órgãos/química , Perfusão/métodos , Rafinose/química , Ratos , Ratos Endogâmicos F344 , Traumatismo por Reperfusão/etiologia , Coleta de Tecidos e Órgãos/efeitos adversos
19.
Toxicol Appl Pharmacol ; 349: 83-93, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29679655

RESUMO

Nephrotoxicity is the main limitation to the dosage and anticancer efficacy of cisplatin. Cisplatin produces tubular epithelial cell apoptosis and necrosis depending on the concentration of the drug. Protection from cisplatin nephrotoxicity must therefore tackle both cell death modes. For its ability to reduce cisplatin reactivity, in addition to its antioxidant effect, we tested and found that N-acetylcysteine (NAC) was most effective at inhibiting cisplatin cytotoxicity. NAC has no significant effect on cell death induced by either cycloheximide or Fas activation, indicating a rather selective action. Pt-DNA-binding experiments suggest that the differential effectiveness of NAC is due to its capacity to quench cisplatin reactivity inside the cell. NAC abolishes cisplatin-induced apoptosis, and transforms the necrosis induced by high concentrations of cisplatin into apoptosis. In fact, NAC allows the anti-apoptotic molecule Bcl-2 to reduce the cell death caused by pro-necrotic concentrations of cisplatin, to a significantly greater extent than in the absence of NAC. In rats, a dosage of NAC that significantly ameliorates cisplatin nephrotoxicity, has little effect on gentamicin nephrotoxicity. These characteristics provide NAC with a rationale as a potential nephroprotectant specifically tailored to and especially effective for therapeutic courses with platinated antineoplastics, which prompts to deepening into further preclinical knowledge, and to initiate clinical studies with NAC and mixed therapies composed of NAC and antiapoptotic drugs.


Assuntos
Acetilcisteína/farmacologia , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cisplatino/toxicidade , Sequestradores de Radicais Livres/farmacologia , Necrose/induzido quimicamente , Animais , Caspases/análise , Caspases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Jurkat , Nefropatias/induzido quimicamente , Nefropatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar
20.
Clin Sci (Lond) ; 132(9): 985-1001, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572384

RESUMO

Cardiotrophin-1 (CT-1) holds potent anti-inflammatory, cytoprotective, and anti-apoptotic effects in the liver, kidneys, and heart. In the present study, the role of endogenous CT-1 and the effect of exogenous CT-1 were evaluated in experimental ulcerative colitis. Colitis was induced in CT-1 knockout and wild-type (WT) mice by administration of dextran sulphate sodium (DSS) in the drinking water during 7 days. CT-1 knockout mice showed higher colon damage and disease severity than WT mice. In addition, CT-1 (200 µg/kg/day, iv) or vehicle (as control) was administered during 3 days to WT, colitic mice, starting on day 4 after initiation of DSS. Disease activity index (DAI), inflammatory markers (tumor necrosis factor α (TNF-α), INFγ, IL-17, IL-10, inducible nitric oxide synthase (iNOS)), colon damage, apoptosis (cleaved caspase 3), nuclear factor κB (NFκB) and STAT-3 activation, and bacterial translocation were measured. Compared with mice treated with DSS, mice also treated with exogenous CT-1 showed lower colon damage, DAI, plasma levels of TNFα, colon expression of TNF-α, INFγ, IL-17, iNOS and cleaved caspase 3, higher NFκB and signal transducer and activator of transcription 3 (STAT3) pathways activation, and absence of bacterial translocation. We conclude that endogenous CT-1 plays a role in the defense and repair response of the colon against ulcerative lesions through an anti-inflammatory and anti-apoptotic effect. Supplementation with exogenous CT-1 ameliorates disease symptoms, which opens a potentially new therapeutic strategy for ulcerative colitis.


Assuntos
Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Citocinas/sangue , Citocinas/uso terapêutico , Animais , Colite Ulcerativa/induzido quimicamente , Citocinas/genética , Sulfato de Dextrana , Avaliação Pré-Clínica de Medicamentos , Masculino , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA