Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38339230

RESUMO

Neurofibromatosis type 1 (NF1) is caused by mutations in the NF1 gene. The clinical presentation of NF1 includes diverse neurological issues in pediatric and adult patients, ranging from learning disabilities, motor skill issues, and attention deficit disorder, to increased risk of depression and dementia. Preclinical research suggests that abnormal neuronal signaling mediates spatial learning and attention issues in NF1; however, drugs that improve phenotypes in models show inconclusive results in clinical trials, highlighting the need for a better understanding of NF1 pathophysiology and broader therapeutic options. Most NF1 patients show abnormalities in their brain white matter (WM) and myelin, and links with NF1 neuropathophysiology have been suggested; however, no current data can clearly support or refute this idea. We reported that myelin-targeted Nf1 mutation impacts oligodendrocyte signaling, myelin ultrastructure, WM connectivity, and sensory-motor behaviors in mice; however, any impact on learning and memory remains unknown. Here, we adapted a voluntary running test-the complex wheel (CW; a wheel with unevenly spaced rungs)-to delineate fine motor skill learning curves following induction of an Nf1 mutation in pre-existing myelinating cells (pNf1 mice). We found that pNf1 mutant females experience delayed or impaired learning in the CW, while proper learning in pNf1 males is predominantly disrupted; these phenotypes add complexity to the gender-dependent learning differences in the mouse strain used. No broad differences in memory of acquired CW skills were detected in any gender, but gene-dose effects were observed at the studied time points. Finally, nitric oxide signaling regulation differentially impacted learning in wild type (WT)/pNf1, male/female mice. Our results provide evidence for fine motor skill learning issues upon induction of an Nf1 mutation in mature myelinating cells. Together with previous connectivity, cellular, and molecular analyses, these results diversify the potential treatments for neurological issues in NF1.

2.
Glia ; 71(12): 2701-2719, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37382486

RESUMO

Evidence for myelin regulating higher-order brain function and disease is rapidly accumulating; however, defining cellular/molecular mechanisms remains challenging partially due to the dynamic brain physiology involving deep changes during development, aging, and in response to learning and disease. Furthermore, as the etiology of most neurological conditions remains obscure, most research models focus on mimicking symptoms, which limits understanding of their molecular onset and progression. Studying diseases caused by single gene mutations represents an opportunity to understand brain dys/function, including those regulated by myelin. Here, we discuss known and potential repercussions of abnormal central myelin on the neuropathophysiology of Neurofibromatosis Type 1 (NF1). Most patients with this monogenic disease present with neurological symptoms diverse in kind, severity, and onset/decline, including learning disabilities, autism spectrum disorders, attention deficit and hyperactivity disorder, motor coordination issues, and increased risk for depression and dementia. Coincidentally, most NF1 patients show diverse white matter/myelin abnormalities. Although myelin-behavior links were proposed decades ago, no solid data can prove or refute this idea yet. A recent upsurge in myelin biology understanding and research/therapeutic tools provides opportunities to address this debate. As precision medicine moves forward, an integrative understanding of all cell types disrupted in neurological conditions becomes a priority. Hence, this review aims to serve as a bridge between fundamental cellular/molecular myelin biology and clinical research in NF1.

3.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266292

RESUMO

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(36): 22506-22513, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32839340

RESUMO

Neurofibromin gene (NF1) mutation causes neurofibromatosis type 1 (NF1), a disorder in which brain white matter deficits identified by neuroimaging are common, yet of unknown cellular etiology. In mice, Nf1 loss in adult oligodendrocytes causes myelin decompaction and increases oligodendrocyte nitric oxide (NO) levels. Nitric oxide synthase (NOS) inhibitors rescue this pathology. Whether oligodendrocyte pathology is sufficient to affect brain-wide structure and account for NF1 imaging findings is unknown. Here we show that Nf1 gene inactivation in adult oligodendrocytes (Plp-Nf1fl/+ mice) results in a motor coordination deficit. Magnetic resonance imaging in awake mice showed that fractional anisotropy is reduced in Plp-Nf1fl/+ corpus callosum and that interhemispheric functional connectivity in the motor cortex is also reduced, consistent with disrupted myelin integrity. Furthermore, NOS-specific inhibition rescued both measures. These results suggest that oligodendrocyte defects account for aspects of brain dysfunction in NF1 that can be identified by neuroimaging and ameliorated by NOS inhibition.


Assuntos
Encéfalo , Neurofibromina 1 , Óxido Nítrico Sintase/antagonistas & inibidores , Oligodendroglia/metabolismo , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Deleção de Genes , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Óxido Nítrico/metabolismo
5.
Glia ; 65(12): 1990-2002, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28856719

RESUMO

Costello syndrome (CS) is a gain of function Rasopathy caused by heterozygous activating mutations in the HRAS gene. Patients show brain dysfunction that can include abnormal brain white matter. Transgenic activation of HRas in the entire mouse oligodendrocyte lineage resulted in myelin defects and behavioral abnormalities, suggesting roles for disrupted myelin in CS brain dysfunction. Here, we studied a mouse model in which the endogenous HRas gene is conditionally replaced by mutant HRasG12V in mature oligodendrocytes, to separate effects in mature myelinating cells from developmental events. Increased myelin thickness due to decompaction was detectable within one month of HRasG12V expression in the corpus callosum of adult mice. Increases in active ERK and Nitric Oxide (NO) were present in HRas mutants and inhibition of NO synthase (NOS) or MEK each partially rescued myelin decompaction. In addition, genetic or pharmacologic inhibition of Notch signaling improved myelin compaction. Complete rescue of myelin structure required dual drug treatments combining MAPK, NO, or Notch inhibition; with MEK + NOS blockade producing the most robust effect. We suggest that individual or concomitant blockade of these pathways in CS patients may improve aspects of brain function.


Assuntos
Sistema de Sinalização das MAP Quinases/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Bainha de Mielina/metabolismo , Óxido Nítrico/metabolismo , Oligodendroglia/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Receptores Notch/metabolismo , Animais , Corpo Caloso/patologia , Corpo Caloso/ultraestrutura , Inibidores Enzimáticos/farmacologia , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica , Mutação/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , NG-Nitroarginina Metil Éster/farmacologia , Oligodendroglia/ultraestrutura , Proteínas Proto-Oncogênicas p21(ras)/genética , Tamoxifeno/farmacologia
6.
Cell Rep ; 19(3): 545-557, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28423318

RESUMO

The RASopathy neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant genetic disorders. In NF1 patients, neurological issues may result from damaged myelin, and mice with a neurofibromin gene (Nf1) mutation show white matter (WM) defects including myelin decompaction. Using mouse genetics, we find that altered Nf1 gene-dose in mature oligodendrocytes results in progressive myelin defects and behavioral abnormalities mediated by aberrant Notch activation. Blocking Notch, upstream mitogen-activated protein kinase (MAPK), or nitric oxide signaling rescues myelin defects in hemizygous Nf1 mutants, and pharmacological gamma secretase inhibition rescues aberrant behavior with no effects in wild-type (WT) mice. Concomitant pathway inhibition rescues myelin abnormalities in homozygous mutants. Notch activation is also observed in Nf1+/- mouse brains, and cells containing active Notch are increased in NF1 patient WM. We thus identify Notch as an Nf1 effector regulating myelin structure and behavior in a RASopathy and suggest that inhibition of Notch signaling may be a therapeutic strategy for NF1.


Assuntos
Bainha de Mielina/metabolismo , Neurofibromina 1/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Comportamento Animal , Contagem de Células , Claudinas/metabolismo , Dosagem de Genes , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação/genética , Neuroglia/metabolismo , Óxido Nítrico/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
7.
Nat Commun ; 4: 2373, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23974433

RESUMO

Direct reprogramming of non-neuronal cells to generate new neurons is a promising approach to repair damaged brains. Impact of the in vivo environment on neuronal reprogramming, however, is poorly understood. Here we show that regional differences and injury conditions have significant influence on the efficacy of reprogramming and subsequent survival of the newly generated neurons in the adult rodent brain. A combination of local exposure to growth factors and retrovirus-mediated overexpression of the neurogenic transcription factor Neurogenin2 can induce new neurons from non-neuronal cells in the adult neocortex and striatum where neuronal turnover is otherwise very limited. These two regions respond to growth factors and Neurogenin2 differently and instruct new neurons to exhibit distinct molecular phenotypes. Moreover, ischaemic insult differentially affects differentiation of new neurons in these regions. These results demonstrate strong environmental impact on direct neuronal reprogramming in vivo.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Reprogramação Celular , Neurônios/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Isquemia/patologia , Masculino , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Neocórtex/patologia , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Especificidade de Órgãos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Retroviridae/efeitos dos fármacos , Retroviridae/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA