Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Chem Sci ; 15(22): 8578-8590, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38846405

RESUMO

The quest for nanomaterial-based imaging probes that can provide positive contrast in MRI is fueled by the necessity of developing novel diagnostic applications with potential for clinical translation that current gold standard probes cannot provide. Although interest in nanomaterials for positive contrast has increased in recent years, their study is less developed than that of traditional negative contrast probes in MRI. In our search for new magnetic materials with enhanced features as positive contrast probes for MRI, we decided to explore the chemical space to comprehensively analyze the effects of different metals on the performance of iron oxide nanomaterials already able to provide positive contrast in MRI. To this end, we synthesized 30 different iron oxide-based nanomaterials. Thorough characterization was performed, including multivariate analysis, to study the effect of different variables on their relaxometric properties. Based on these results, we identified the best combination of metals for in vivo imaging and tested them in different experiments. First, we tested its performance on magnetic resonance angiography using a concentration ten times lower than that clinically approved for Gd. Finally, we studied the capability of these nanomaterials to cross the affected blood-brain barrier in a glioblastoma model. The results showed that the selected nanomaterials provided excellent positive contrast at large magnetic field and were able to accumulate at the tumor site, highlighting the affected tissue.

2.
Hear Res ; 447: 109012, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38703433

RESUMO

Hearing loss is a common side effect of many tumor treatments. However, hearing loss can also occur as a direct result of certain tumors of the nervous system, the most common of which are the vestibular schwannomas (VS). These tumors arise from Schwann cells of the vestibulocochlear nerve and their main cause is the loss of function of NF2, with 95 % of cases being sporadic and 5 % being part of the rare neurofibromatosis type 2 (NF2)-related Schwannomatosis. Genetic variations in NF2 do not fully explain the clinical heterogeneity of VS, and interactions between Schwann cells and their microenvironment appear to be critical for tumor development. Preclinical in vitro and in vivo models of VS are needed to develop prognostic biomarkers and targeted therapies. In addition to VS, other tumors can affect hearing. Meningiomas and other masses in the cerebellopontine angle can compress the vestibulocochlear nerve due to their anatomic proximity. Gliomas can disrupt several neurological functions, including hearing; in fact, glioblastoma multiforme, the most aggressive subtype, may exhibit early symptoms of auditory alterations. Besides, treatments for high-grade tumors, including chemotherapy or radiotherapy, as well as incomplete resections, can induce long-term auditory dysfunction. Because hearing loss can have an irreversible and dramatic impact on quality of life, it should be considered in the clinical management plan of patients with tumors, and monitored throughout the course of the disease.


Assuntos
Perda Auditiva , Audição , Neuroma Acústico , Humanos , Neuroma Acústico/patologia , Neuroma Acústico/fisiopatologia , Neuroma Acústico/complicações , Perda Auditiva/fisiopatologia , Perda Auditiva/etiologia , Perda Auditiva/patologia , Animais , Neurilemoma/patologia , Neurilemoma/complicações , Neurilemoma/terapia , Nervo Vestibulococlear/patologia , Nervo Vestibulococlear/fisiopatologia , Fatores de Risco , Neurofibromatose 2/genética , Neurofibromatose 2/complicações , Neurofibromatose 2/patologia , Neurofibromatose 2/fisiopatologia , Neurofibromatose 2/terapia , Meningioma/patologia , Meningioma/fisiopatologia , Meningioma/complicações
3.
Brain Sci ; 14(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38790388

RESUMO

Glioblastoma (GBM) stands as the most prevalent and lethal malignant brain tumor, characterized by its highly infiltrative nature. This study aimed to identify additional MRI and metabolomic biomarkers of GBM and its impact on healthy tissue using an advanced-stage C6 glioma rat model. Wistar rats underwent a stereotactic injection of C6 cells (GBM group, n = 10) or cell medium (sham group, n = 4). A multiparametric MRI, including anatomical T2W and T1W images, relaxometry maps (T2, T2*, and T1), the magnetization transfer ratio (MTR), and diffusion tensor imaging (DTI), was performed. Additionally, ex vivo magnetic resonance spectroscopy (MRS) HRMAS spectra were acquired. The MRI analysis revealed significant differences in the T2 maps, T1 maps, MTR, and mean diffusivity parameters between the GBM tumor and the rest of the studied regions, which were the contralateral areas of the GBM rats and both regions of the sham rats (the ipsilateral and contralateral). The ex vivo spectra revealed markers of neuronal loss, apoptosis, and higher glucose uptake by the tumor. Notably, the myo-inositol and phosphocholine levels were elevated in both the tumor and the contralateral regions of the GBM rats compared to the sham rats, suggesting the effects of the tumor on the healthy tissue. The MRI parameters related to inflammation, cellularity, and tissue integrity, along with MRS-detected metabolites, serve as potential biomarkers for the tumor evolution, treatment response, and impact on healthy tissue. These techniques can be potent tools for evaluating new drugs and treatment targets.

5.
Cancer Imaging ; 23(1): 36, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038232

RESUMO

BACKGROUND: Global energy balance is a vital process tightly regulated by the brain that frequently becomes dysregulated during the development of cancer. Glioblastoma (GBM) is one of the most investigated malignancies, but its appetite-related disorders, like anorexia/cachexia symptoms, remain poorly understood. METHODS: We performed manganese enhanced magnetic resonance imaging (MEMRI) and subsequent diffusion tensor imaging (DTI), in adult male GBM-bearing (n = 13) or control Wistar rats (n = 12). A generalized linear model approach was used to assess the effects of fasting in different brain regions involved in the regulation of the global energy metabolism: cortex, hippocampus, hypothalamus and thalamus. The regions were selected on the contralateral side in tumor-bearing animals, and on the left hemisphere in control rats. An additional DTI-only experiment was completed in two additional GBM (n = 5) or healthy cohorts (n = 6) to assess the effects of manganese infusion on diffusion measurements. RESULTS: MEMRI results showed lower T1 values in the cortex (p-value < 0.001) and thalamus (p-value < 0.05) of the fed ad libitum GBM animals, as compared to the control cohort, consistent with increased Mn2+ accumulation. No MEMRI-detectable differences were reported between fed or fasting rats, either in control or in the GBM group. In the MnCl2-infused cohorts, DTI studies showed no mean diffusivity (MD) variations from the fed to the fasted state in any animal cohort. However, the DTI-only set of acquisitions yielded remarkably decreased MD values after fasting only in the healthy control rats (p-value < 0.001), and in all regions, but thalamus, of GBM compared to control animals in the fed state (p-value < 0.01). Fractional anisotropy (FA) decreased in tumor-bearing rats due to the infiltrate nature of the tumor, which was detected in both diffusion sets, with (p-value < 0.01) and without Mn2+ administration (p-value < 0.001). CONCLUSIONS: Our results revealed that an altered physiological brain response to fasting occurred in hunger related regions in GBM animals, detectable with DTI, but not with MEMRI acquisitions. Furthermore, the present results showed that Mn2+ induces neurotoxic inflammation, which interferes with diffusion MRI to detect appetite-induced responses through MD changes.


Assuntos
Glioblastoma , Masculino , Ratos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Imagem de Tensor de Difusão/métodos , Manganês , Anorexia/patologia , Ratos Wistar , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Jejum
6.
Brain Res Bull ; 192: 12-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36328144

RESUMO

Chemotherapy-induced neuropathy (CIN) is one of the most common complications of cancer treatment with sensory dysfunctions which frequently include pain. The mechanisms underlying pain during CIN are starting to be uncovered. Neuroimaging allows the identification of brain circuitry involved in pain processing and modulation and has recently been used to unravel the disruptions of that circuitry by neuropathic pain. The present study evaluates the effects of paclitaxel, a cytostatic drug frequently used in cancer treatment, at the neuronal function in the anterior cingulate cortex (ACC), hypothalamus and periaqueductal gray (PAG) using manganese-enhanced magnetic resonance imaging (MEMRI). We also studied the metabolic profile at the prefrontal cortex (PFC) and hypothalamus using ex vivo spectroscopy. Wistar male rats were intraperitoneal injected with paclitaxel or vehicle solution (DMSO). The evaluation of mechanical sensitivity using von Frey test at baseline (BL), 21 (T21), 28 (T28), 49 (T49) and 56 days (T56) after CIN induction showed that paclitaxel-injected rats presented mechanical hypersensitivity from T21 until T56 after CIN induction. The evaluation of the locomotor activity and exploratory behaviors using open-field test at T28 and T56 after the first injection of paclitaxel revealed that paclitaxel-injected rats walked higher distance with higher velocity at late point of CIN accompanied with a sustained exhibition of anxiety-like behaviors. Imaging studies performed using MEMRI at T28 and T56 showed that paclitaxel treatment increased the neuronal activation in the hypothalamus and PAG at T56 in comparison with the control group. The analysis of data from ex vivo spectroscopy demonstrated that at T28 paclitaxel-injected rats presented an increase of N-acetyl aspartate (NAA) levels in the PFC and an increase of NAA and decrease of lactate (Lac) concentration in the hypothalamus compared to the control group. Furthermore, at T56 the paclitaxel-injected rats presented lower NAA and higher taurine (Tau) levels in the PFC. Together, MEMRI and metabolomic data indicate that CIN is associated with neuroplastic changes in brain areas involved in pain modulation and suggests that other events involving glial cells may be happening.


Assuntos
Antineoplásicos , Neuralgia , Animais , Ratos , Masculino , Ratos Wistar , Neuralgia/induzido quimicamente , Neuralgia/diagnóstico por imagem , Neuralgia/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Paclitaxel/toxicidade , Paclitaxel/uso terapêutico , Antineoplásicos/toxicidade , Análise Espectral
8.
Metabolism ; 137: 155335, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272468

RESUMO

BACKGROUND: Second-generation antipsychotics (SGAs) are a mainstay therapy for schizophrenia. SGA-treated patients present higher risk for weight gain, dyslipidemia and hyperglycemia. Herein, we evaluated the effects of olanzapine (OLA), widely prescribed SGA, in mice focusing on changes in body weight and energy balance. We further explored OLA effects in protein tyrosine phosphatase-1B deficient (PTP1B-KO) mice, a preclinical model of leptin hypersensitivity protected against obesity. METHODS: Wild-type (WT) and PTP1B-KO mice were fed an OLA-supplemented diet (5 mg/kg/day, 7 months) or treated with OLA via intraperitoneal (i.p.) injection or by oral gavage (10 mg/kg/day, 8 weeks). Readouts of the crosstalk between hypothalamus and brown or subcutaneous white adipose tissue (BAT and iWAT, respectively) were assessed. The effects of intrahypothalamic administration of OLA with adenoviruses expressing constitutive active AMPKα1 in mice were also analyzed. RESULTS: Both WT and PTP1B-KO mice receiving OLA-supplemented diet presented hyperphagia, but weight gain was enhanced only in WT mice. Unexpectedly, all mice receiving OLA via i.p. lost weight without changes in food intake, but with increased energy expenditure (EE). In these mice, reduced hypothalamic AMPK phosphorylation concurred with elevations in UCP-1 and temperature in BAT. These effects were also found by intrahypothalamic OLA injection and were abolished by constitutive activation of AMPK in the hypothalamus. Additionally, OLA i.p. treatment was associated with enhanced Tyrosine Hydroxylase (TH)-positive innervation and less sympathetic neuron-associated macrophages in iWAT. Both central and i.p. OLA injections increased UCP-1 and TH in iWAT, an effect also prevented by hypothalamic AMPK activation. By contrast, in mice fed an OLA-supplemented diet, BAT thermogenesis was only enhanced in those lacking PTP1B. Our results shed light for the first time that a threshold of OLA levels reaching the hypothalamus is required to activate the hypothalamus BAT/iWAT axis and, therefore, avoid weight gain. CONCLUSION: Our results have unraveled an unexpected metabolic rewiring controlled by hypothalamic AMPK that avoids weight gain in male mice treated i.p. with OLA by activating BAT thermogenesis and iWAT browning and a potential benefit of PTP1B inhibition against OLA-induced weight gain upon oral treatment.


Assuntos
Proteínas Quinases Ativadas por AMP , Hipotálamo , Masculino , Camundongos , Animais , Olanzapina/metabolismo , Olanzapina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Fosforilação , Hipotálamo/metabolismo , Termogênese/fisiologia , Peso Corporal , Metabolismo Energético , Aumento de Peso , Tecido Adiposo Marrom/metabolismo
9.
Pharmaceutics ; 13(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34452219

RESUMO

Conjugated polymer nanoparticles (CPNs) have emerged as advanced polymeric nanoplatforms in biomedical applications by virtue of extraordinary properties including high fluorescence brightness, large absorption coefficients of one and two-photons, and excellent photostability and colloidal stability in water and physiological medium. In addition, low cytotoxicity, easy functionalization, and the ability to modify CPN photochemical properties by the incorporation of dopants, convert them into excellent theranostic agents with multifunctionality for imaging and treatment. In this work, CPNs were designed and synthesized by incorporating a metal oxide magnetic core (Fe3O4 and NiFe2O4 nanoparticles, 5 nm) into their matrix during the nanoprecipitation method. This modification allowed the in vivo monitoring of nanoparticles in animal models using magnetic resonance imaging (MRI) and intravital fluorescence, techniques widely used for intracranial tumors evaluation. The modified CPNs were assessed in vivo in glioblastoma (GBM) bearing mice, both heterotopic and orthotopic developed models. Biodistribution studies were performed with MRI acquisitions and fluorescence images up to 24 h after the i.v. nanoparticles administration. The resulting IONP-doped CPNs were biocompatible in GBM tumor cells in vitro with an excellent cell incorporation depending on nanoparticle concentration exposure. IONP-doped CPNs were detected in tumor and excretory organs of the heterotopic GBM model after i.v. and i.t. injection. However, in the orthotopic GBM model, the size of the nanoparticles is probably hindering a higher effect on intratumorally T2-weighted images (T2WI) signals and T2 values. The photodynamic therapy (PDT)-cytotoxicity of CPNs was not either affected by the IONPs incorporation into the nanoparticles.

10.
Nanomedicine (Lond) ; 15(17): 1687-1707, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32689873

RESUMO

Aim: To assess monocyte-based delivery of conjugated polymer nanoparticles (CPNs) for improved photodynamic therapy (PDT) in glioblastoma (GBM). Materials & methods: Human monocyte cells (THP-1) and murine monocytes isolated from bone marrow (mBMDMs) were employed as stealth CPN carriers to penetrate into GBM spheroids and an orthotopic model of the tumor. The success of PDT, using this cell-mediated targeting strategy, was determined by its effect on the spheroids. Results: CPNs did not affect monocyte viability in the absence of light and did not show nonspecific release after cell loading. Activated monocytes incorporated CPNs in a higher proportion than monocytes in their naive state, without a loss of cellular functionality. In vitro PDT efficacy using cell-mediated delivery was superior to that using non vehiculized CPNs. Conclusion: CPN-loaded monocytes could efficiently deliver CPNs into GBM spheroids and the orthotopic model. Improved PDT in spheroids was confirmed using this delivery strategy.


Assuntos
Glioblastoma , Monócitos , Nanopartículas , Fotoquimioterapia , Animais , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Glioblastoma/tratamento farmacológico , Camundongos , Polímeros/uso terapêutico
11.
Redox Biol ; 30: 101425, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31918259

RESUMO

Transcription factor NRF2 orchestrates a cellular defense against oxidative stress and, so far, has been involved in tumor progression by providing a metabolic adaptation to tumorigenic demands and resistance to chemotherapeutics. In this study, we discover that NRF2 also propels tumorigenesis in gliomas and glioblastomas by inducing the expression of the transcriptional co-activator TAZ, a protein of the Hippo signaling pathway that promotes tumor growth. The expression of the genes encoding NRF2 (NFE2L2) and TAZ (WWTR1) showed a positive correlation in 721 gliomas from The Cancer Genome Atlas database. Moreover, NRF2 and TAZ protein levels also correlated in immunohistochemical tissue arrays of glioblastomas. Genetic knock-down of NRF2 decreased, while NRF2 overexpression or chemical activation with sulforaphane, increased TAZ transcript and protein levels. Mechanistically, we identified several NRF2-regulated functional enhancers in the regulatory region of WWTR1. The relevance of the new NRF2/TAZ axis in tumorigenesis was demonstrated in subcutaneous and intracranial grafts. Thus, intracranial inoculation of NRF2-depleted glioma stem cells did not develop tumors as determined by magnetic resonance imaging. Forced TAZ overexpression partly rescued both stem cell growth in neurospheres and tumorigenicity. Hence, NRF2 not only enables tumor cells to be competent to proliferate but it also propels tumorigenesis by activating the TAZ-mediated Hippo transcriptional program.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Transativadores/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Células HEK293 , Via de Sinalização Hippo , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Análise Serial de Tecidos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional
12.
Top Curr Chem (Cham) ; 378(1): 15, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938922

RESUMO

Nowadays, biomaterials have become a crucial element in numerous biomedical, preclinical, and clinical applications. The use of nanoparticles entails a great potential in these fields mainly because of the high ratio of surface atoms that modify the physicochemical properties and increases the chemical reactivity. Among them, carbon nanotubes (CNTs) have emerged as a powerful tool to improve biomedical approaches in the management of numerous diseases. CNTs have an excellent ability to penetrate cell membranes, and the sp2 hybridization of all carbons enables their functionalization with almost every biomolecule or compound, allowing them to target cells and deliver drugs under the appropriate environmental stimuli. Besides, in the new promising field of artificial biomaterial generation, nanotubes are studied as the load in nanocomposite materials, improving their mechanical and electrical properties, or even for direct use as scaffolds in body tissue manufacturing. Nevertheless, despite their beneficial contributions, some major concerns need to be solved to boost the clinical development of CNTs, including poor solubility in water, low biodegradability and dispersivity, and toxicity problems associated with CNTs' interaction with biomolecules in tissues and organs, including the possible effects in the proteome and genome. This review performs a wide literature analysis to present the main and latest advances in the optimal design and characterization of carbon nanotubes with biomedical applications, and their capacities in different areas of preclinical research.


Assuntos
Nanomedicina/métodos , Nanotecnologia/métodos , Nanotubos de Carbono/análise , Animais , Humanos , Modelos Moleculares , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura
13.
Materials (Basel) ; 13(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978954

RESUMO

Gold nanoparticles (AuNPs) are interesting for the design of new cancer theranostic tools, mainly due to their biocompatibility, easy molecular vectorization, and good biological half-life. Herein, we report a gold nanoparticle platform as a bimodal imaging probe, capable of coordinating Gd3+ for Magnetic Resonance Imaging (MRI) and 67Ga3+ for Single Photon Emission Computed Tomography (SPECT) imaging. Our AuNPs carry a bombesin analogue with affinity towards the gastrin releasing peptide receptor (GRPr), overexpressed in a variety of human cancer cells, namely PC3 prostate cancer cells. The potential of these multimodal imaging nanoconstructs was thoroughly investigated by the assessment of their magnetic properties, in vitro cellular uptake, biodistribution, and radiosensitisation assays. The relaxometric properties predict a potential T1- and T2- MRI application. The promising in vitro cellular uptake of 67Ga/Gd-based bombesin containing particles was confirmed through biodistribution studies in tumor bearing mice, indicating their integrity and ability to target the GRPr. Radiosensitization studies revealed the therapeutic potential of the nanoparticles. Moreover, the DOTA chelating unit moiety versatility gives a high theranostic potential through the coordination of other therapeutically interesting radiometals. Altogether, our nanoparticles are interesting nanomaterial for theranostic application and as bimodal T1- and T2- MRI / SPECT imaging probes.

14.
Front Oncol ; 9: 328, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134147

RESUMO

Objective: We assess the efficacy of the metabolomic profile from glioma biopsies in providing estimates of postsurgical Overall Survival in glioma patients. Methods: Tumor biopsies from 46 patients bearing gliomas, obtained neurosurgically in the period 1992-1998, were analyzed by high resolution 1H magnetic resonance spectroscopy (HR- 1H MRS), following retrospectively individual postsurgical Overall Survival up to 720 weeks. Results: The Overall Survival profile could be resolved in three groups; Short (shorter than 52 weeks, n = 19), Intermediate (between 53 and 364 weeks, n = 19) or Long (longer than 365 weeks, n = 8), respectively. Classical histopathological analysis assigned WHO grades II-IV to every biopsy but notably, some patients with low grade glioma depicted unexpectedly Short Overall Survival, while some patients with high grade glioma, presented unpredictably Long Overall Survival. To explore the reasons underlying these different responses, we analyzed HR-1H MRS spectra from acid extracts of the same biopsies, to characterize the metabolite patterns associated to OS predictions. Poor prognosis was found in biopsies with higher contents of alanine, acetate, glutamate, total choline, phosphorylcholine, and glycine, while more favorable prognosis was achieved in biopsies with larger contents of total creatine, glycerol-phosphorylcholine, and myo-inositol. We then implemented a multivariate analysis to identify hierarchically the influence of metabolomic biomarkers on OS predictions, using a Classification Regression Tree (CRT) approach. The CRT based in metabolomic biomarkers grew up to three branches and split into eight nodes, predicting correctly the outcome of 94.7% of the patients in the Short Overall Survival group, 78.9% of the patients in the Intermediate Overall Survival group, and 75% of the patients in the Long Overall Survival group, respectively. Conclusion: Present results indicate that metabolic profiling by HR-1H MRS improves the Overall Survival predictions derived exclusively from classical histopathological gradings, thus favoring more precise therapeutic decisions.

15.
J Proteome Res ; 17(9): 2953-2962, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30129764

RESUMO

We used 1H, 13C HRMAS and genomic analysis to investigate regionally the transition from oxidative to glycolytic phenotype and its relationship with altered gene expression in adjacent biopsies through the brain of rats bearing C6 gliomas. Tumor-bearing animals were anesthetized and infused with a solution of [1-13C]-glucose, and small adjacent biopsies were obtained spanning transversally from the contralateral hemisphere (regions I and II), the right and left peritumoral areas (regions III and V, respectively), and the tumor core (region IV). These biopsies were analyzed by 1H, 13C HRMAS and by quantitative gene expression techniques. Glycolytic metabolism, as reflected by the [3-13C]-lactate content, increased clearly from regions I to IV, recovering partially to physiological levels in region V. In contrast, oxidative metabolism, as reflected by the [4-13C]-glutamate labeling, decreased in regions I-IV, recovering partially in region V. This metabolic shift from normal to malignant metabolic phenotype paralleled changes in the expression of HIF1α, HIF2α, HIF3α genes, downstream transporters, and regulatory glycolytic, oxidative, and anaplerotic genes in the same regions. Together, our results indicate that genetic and metabolic alterations occurring in the brain of rats bearing C6 gliomas colocalize in situ and the profile of genetic alterations in every region can be inferred from the metabolomic profiles observed in situ by multinuclear HRMAS.


Assuntos
Neoplasias Encefálicas/genética , Reprogramação Celular , Glioma/genética , Glicólise/genética , Fosforilação Oxidativa , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Biópsia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Isótopos de Carbono , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/metabolismo , Núcleo Caudado/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/patologia , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Transplante de Neoplasias , Ratos , Ratos Wistar , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transplante Heterólogo
16.
Methods Mol Biol ; 1718: 41-57, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29341001

RESUMO

The use of magnetic resonance imaging (MRI) for studying the cerebral perfusion mechanisms is well proved and contrasted in the clinical and research setups. This methodology is a promising tool in assessing numerous brain diseases like intracranial tumors, neurodegeneration processes, mental disorders, injuries and so on. In the preclinical environment, perfusion MRI offers a powerful resource for characterizing pathological models and specially identifying biomarkers to monitor the illness and validate the efficacy of therapeutical approaches. This chapter presents the theoretical bases and experimental protocols of dynamic susceptibility contrast MRI acquisitions for developing perfusion MRI studies in small animals.


Assuntos
Encefalopatias/patologia , Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos , Perfusão
17.
Methods Mol Biol ; 1718: 297-313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29341016

RESUMO

Oxygen monitoring is a topic of exhaustive research due to its central role in many biological processes, from energy metabolism to gene regulation. The ability to monitor in vivo the physiological distribution and the dynamics of oxygen from subcellular to macroscopic levels is a prerequisite to better understand the mechanisms associated with both normal and disease states (cancer, neurodegeneration, stroke, etc.). This chapter focuses on magnetic resonance imaging (MRI) based techniques to assess oxygenation in vivo. The first methodology uses injected fluorinated agents to provide quantitative pO2 measurements with high precision and suitable spatial and temporal resolution for many applications. The second method exploits changes in endogenous contrasts, i.e., deoxyhemoglobin and oxygen molecules through measurements of T 2* and T 1, in response to an intervention to qualitatively evaluate hypoxia and its potential modulation.


Assuntos
Hemoglobinas/metabolismo , Hipóxia/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Monitorização Fisiológica , Oxigênio/metabolismo , Animais , Humanos
18.
Nanomedicine ; 11(6): 1345-54, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25888277

RESUMO

Liposomal drug delivery vehicles are promising nanomedicine tools for bringing cytotoxic drugs to cancerous tissues selectively. However, the triggered cargo release from liposomes in response to a target-specific stimulus has remained elusive. We report on functionalizing stealth-liposomes with an engineered ion channel and using these liposomes in vivo for releasing an imaging agent into a cerebral glioma rodent model. If the ambient pH drops below a threshold value, the channel generates temporary pores on the liposomes, thus allowing leakage of the intraluminal medicines. By using magnetic resonance spectroscopy and imaging, we show that engineered liposomes can detect the mildly acidic pH of the tumor microenvironment with 0.2 pH unit precision and they release their content into C6 glioma tumors selectively, in vivo. A drug delivery system with this level of sensitivity and selectivity to environmental stimuli may well serve as an optimal tool for environmentally-triggered and image-guided drug release. FROM THE CLINICAL EDITOR: Cancer remains a leading cause of mortality worldwide. With advances in science, delivery systems of anti-cancer drugs have also become sophisticated. In this article, the authors designed and characterized functionalized liposomal vehicles, which would release the drug payload in a highly sensitive manner in response to a change in pH environment in an animal glioma model. The novel data would enable better future designs of drug delivery systems.


Assuntos
Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Portadores de Fármacos , Glioblastoma/patologia , Concentração de Íons de Hidrogênio , Canais Iônicos/química , Lipossomos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
19.
Liver Int ; 34(3): 379-87, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23869990

RESUMO

BACKGROUND & AIMS: Low-grade cytotoxic oedema is considered a main contributor to the neurological (motor and cognitive) alterations in patients with hepatic encephalopathy (HE). This assumption is mainly based on studies with cultured astrocytes treated with very large ammonia concentrations or with animal models of acute liver failure with strong HE. However, the possible contribution of cerebral oedema (vasogenic or cytotoxic) to cognitive or motor alterations in chronic mild HE has not been demonstrated. The aim of this work was to assess whether cerebral oedema contributes to cognitive and/or motor alterations in rats with chronic mild HE. METHODS: Motor activity and coordination and different types of learning and memory were assessed in rats with porta-caval shunts (PCS). Brain oedema was assessed by gravimetry in cerebellum and cortex and apparent diffusion coefficient (ADC) by magnetic resonance in 16 areas. RESULTS: Four weeks after surgery, PCS rats show reduced motor activity and coordination, impaired ability to learn a conditional discrimination task in the Y maze and reduced spatial memory in the Morris water maze. PCS rats did not show increased brain water content at 4 or 10 weeks or changes in ADC at 4 weeks. At 10 weeks, increased ADC in some areas is compatible with vasogenic but not cytotoxic oedema. CONCLUSION: Cerebral oedema is not involved in motor and cognitive alterations in rats (and likely in humans) with mild HE. Proper understanding of the mechanisms responsible for the neurological alterations in HE is necessary to design efficient treatments.


Assuntos
Edema Encefálico/diagnóstico , Cerebelo/diagnóstico por imagem , Encefalopatia Hepática/complicações , Animais , Cognição , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Memória , Atividade Motora , Derivação Portocava Cirúrgica , Cintilografia , Ratos , Ratos Wistar
20.
EJNMMI Res ; 4(1): 44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116110

RESUMO

BACKGROUND: Glioblastoma, the most frequent and aggressive of all astrocytomas, presents a clear predominance in male humans, but the assessment of sexual differences in its tumourigenesis and growth has received little attention so far. In this study, we aim to identify gender-dependent surrogate markers in an animal model of this cancer by means of magnetic resonance (MR) imaging and biochemical and behavioural studies. METHODS: A high-grade glioma model developed in male and female rats was used. Multiparametric magnetic resonance images and localized spectra were acquired. The MR parameters linked to tumoural features were quantified. Motor and metabolic activity was also assessed. Postmortem analyses were carried out to measure indicators of malignancy, tumoural metabolism and viability of the blood-brain barrier (BBB). RESULTS: Statistically significant differences dependent on the animal sex were found in the study of pathological indicators like oedema, inflammation, cellularity and microvasculature. Results suggest higher cell proliferative rate, inflammation and vasogenic oedema and or necrosis in glioma-bearing male rats. Haemodynamic parameters measured indicated a major disruption of the BBB, postmortem confirmed, in this sex. Metabolomic and energetic metabolism activity data are in agreement with a major malignancy and aggressiveness of this cancer model on males. CONCLUSIONS: Gender differences should be taken into account in preclinical studies of glioblastoma models, in the characterization of the tumoural behaviour and consequently in the development and validation of new therapeutic approaches. MR imaging and spectroscopy allow to non-invasively monitor this sexual dimorphism in the diagnosis and prognosis of brain cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA