Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cardiovasc Transl Res ; 15(6): 1239-1255, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35355220

RESUMO

Alternative splicing (AS) plays a major role in the generation of transcript diversity. In the heart, roles have been described for some AS variants, but the global impact and regulation of AS patterns are poorly understood. Here, we studied the AS profiles in heart disease, their relationship with heart development, and the regulatory mechanisms controlling AS dynamics in the mouse heart. We found that AS profiles characterized the different groups and that AS and gene expression changes affected independent genes and biological functions. Moreover, AS changes, specifically in heart disease, were associated with potential protein-protein interaction changes. While developmental transitions were mainly driven by the upregulation of MBNL1, AS changes in disease were driven by a complex regulatory network, where PTBP1 played a central role. Indeed, PTBP1 over-expression was sufficient to induce cardiac hypertrophy and diastolic dysfunction, potentially by perturbing AS patterns.


Assuntos
Processamento Alternativo , Cardiopatias , Animais , Camundongos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Coração , Cardiopatias/genética
2.
Circ Heart Fail ; 14(9): e007616, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34412508

RESUMO

BACKGROUND: Arrhythmogenic right ventricular cardiomyopathy type 5 (ARVC5) is an inherited cardiac disease with complete penetrance and an aggressive clinical course caused by mutations in TMEM43 (transmembrane protein 43). There is no cure for ARVC5 and palliative treatment is started once the phenotype is present. A transgenic mouse model of ARVC5 expressing human TMEM43-S358L (TMEM43mut) recapitulates the human disease, enabling the exploration of preventive treatments. The aim of this study is to determine whether preventive treatment with heart failure drugs (ß-blockers, ACE [angiotensin-converting enzyme] inhibitors, mineralocorticoid-receptor antagonists) improves the disease course of ARVC5 in TMEM43mut mice. METHODS: TMEM43mut male/female mice were treated with metoprolol (ß-blockers), enalapril (ACE inhibitor), spironolactone (mineralocorticoid-receptor antagonist), ACE inhibitor + mineralocorticoid-receptor antagonist, ACE inhibitor + mineralocorticoid-receptor antagonist + ß-blockers or left untreated. Drugs were initiated at 3 weeks of age, before ARVC5 phenotype, and serial ECG and echocardiograms were performed. RESULTS: TMEM43mut mice treated with enalapril showed a significantly increased median survival compared with untreated mice (26 versus 21 weeks; P=0.003). Enalapril-treated mice also exhibited increased left ventricular ejection fraction at 4 months compared with controls (37.0% versus 24.9%; P=0.004), shorter QRS duration and reduced left ventricle fibrosis. Combined regimens including enalapril also showed positive effects. Metoprolol decreased QRS voltage prematurely and resulted in a nonsignificant decrease in left ventricular ejection fraction compared with untreated TMEM43mut mice. CONCLUSIONS: Preventive enalapril-based regimens reduced fibrosis, improved ECG, echocardiographic parameters and survival of ARVC5 mice. Early metoprolol did not show positive effects and caused premature ECG abnormalities. Our findings pave the way to consider prophylactic enalapril in asymptomatic ARVC5 genetic carriers.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Displasia Arritmogênica Ventricular Direita/tratamento farmacológico , Displasia Arritmogênica Ventricular Direita/mortalidade , Enalapril/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Antagonistas Adrenérgicos beta/uso terapêutico , Animais , Coração/efeitos dos fármacos , Insuficiência Cardíaca/mortalidade , Ventrículos do Coração/efeitos dos fármacos , Camundongos , Volume Sistólico/efeitos dos fármacos , Função Ventricular Esquerda/efeitos dos fármacos
4.
Circulation ; 140(14): 1188-1204, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31567019

RESUMO

BACKGROUND: Arrhythmogenic cardiomyopathy/arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited cardiac disease characterized by fibrofatty replacement of the myocardium, resulting in heart failure and sudden cardiac death. The most aggressive arrhythmogenic cardiomyopathy/ARVC subtype is ARVC type 5 (ARVC5), caused by a p.S358L mutation in TMEM43 (transmembrane protein 43). The function and localization of TMEM43 are unknown, as is the mechanism by which the p.S358L mutation causes the disease. Here, we report the characterization of the first transgenic mouse model of ARVC5. METHODS: We generated transgenic mice overexpressing TMEM43 in either its wild-type or p.S358L mutant (TMEM43-S358L) form in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. RESULTS: We found that mice expressing TMEM43-S358L recapitulate the human disease and die at a young age. Mutant TMEM43 causes cardiomyocyte death and severe fibrofatty replacement. We also demonstrate that TMEM43 localizes at the nuclear membrane and interacts with emerin and ß-actin. TMEM43-S358L shows partial delocalization to the cytoplasm, reduced interaction with emerin and ß-actin, and activation of glycogen synthase kinase-3ß (GSK3ß). Furthermore, we show that targeting cardiac fibrosis has no beneficial effect, whereas overexpression of the calcineurin splice variant calcineurin Aß1 results in GSK3ß inhibition and improved cardiac function and survival. Similarly, treatment of TMEM43 mutant mice with a GSK3ß inhibitor improves cardiac function. Finally, human induced pluripotent stem cells bearing the p.S358L mutation also showed contractile dysfunction that was partially restored after GSK3ß inhibition. CONCLUSIONS: Our data provide evidence that TMEM43-S358L leads to sustained cardiomyocyte death and fibrofatty replacement. Overexpression of calcineurin Aß1 in TMEM43 mutant mice or chemical GSK3ß inhibition improves cardiac function and increases mice life span. Our results pave the way toward new therapeutic approaches for ARVC5.


Assuntos
Displasia Arritmogênica Ventricular Direita/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Disfunção Ventricular/patologia , Animais , Calcineurina/genética , Calcineurina/metabolismo , Diferenciação Celular , Sobrevivência Celular/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Ventrículos do Coração/fisiopatologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Índice de Gravidade de Doença , Disfunção Ventricular/mortalidade
5.
FASEB J ; 32(2): 920-934, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29054855

RESUMO

Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras-/-) and control wild-type (H -ras+/+) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iß protein expression in H -ras-/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras-/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3ß-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iß overexpression in H -ras-/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iß overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iß pathway activation.


Assuntos
Angiotensina II/efeitos adversos , Cardiomegalia/enzimologia , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Hipertensão/enzimologia , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas p21(ras)/deficiência , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Embrião de Mamíferos/enzimologia , Embrião de Mamíferos/patologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Fibroblastos/enzimologia , Fibroblastos/patologia , Deleção de Genes , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/patologia , Camundongos , Camundongos Knockout
6.
Cardiovasc Res ; 109(1): 67-78, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26260798

RESUMO

AIMS: After myocardial infarction (MI), extensive remodelling of the extracellular matrix contributes to scar formation. While aiming to preserve tissue integrity, this fibrotic response is also associated with adverse events, including a markedly increased risk of heart failure, ventricular arrhythmias, and sudden cardiac death. Cardiac fibrosis is characterized by extensive deposition of collagen and also by increased stiffness as a consequence of enhanced collagen cross-linking. Members of the lysyl oxidase (LOX) family of enzymes are responsible for the formation of collagen cross-links. This study investigates the contribution of LOX family members to the heart response to MI. METHODS AND RESULTS: Experimental MI was induced in C57BL/6 mice by permanent ligation of the left anterior descending coronary artery. The expression of LOX isoforms (LOX and LOXL1-4) was strongly increased upon MI, and this response was accompanied by a significant accumulation of mature collagen fibres in the infarcted area. LOX expression was observed in areas of extensive remodelling, partially overlapping with α-smooth muscle actin-expressing myofibroblasts. Tumour growth factor-ß as well as hypoxia-activated pathways contributed to the induction of LOX expression in cardiac fibroblasts. Finally, in vivo post-infarction treatment with the broadband LOX inhibitor ß-aminopropionitrile or, selectively, with a neutralizing antibody against the canonical LOX isoform attenuated collagen accumulation and maturation and also resulted in reduced ventricular dilatation and improved cardiac function. CONCLUSION: LOX family members contribute significantly to the detrimental effects of cardiac remodelling, highlighting LOX inhibition as a potential therapeutic strategy for post-infarction recovery.


Assuntos
Matriz Extracelular/fisiologia , Coração/fisiopatologia , Infarto do Miocárdio/enzimologia , Proteína-Lisina 6-Oxidase/biossíntese , Animais , Hipóxia Celular , Células Cultivadas , Indução Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Proteína-Lisina 6-Oxidase/genética , Fator de Crescimento Transformador beta/farmacologia
7.
Circ Cardiovasc Genet ; 8(5): 643-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175529

RESUMO

BACKGROUND: Mutations in sarcomeric and cytoskeletal proteins are a major cause of hereditary cardiomyopathies, but our knowledge remains incomplete as to how the genetic defects execute their effects. METHODS AND RESULTS: We used cysteine and glycine-rich protein 3, a known cardiomyopathy gene, in a yeast 2-hybrid screen and identified zinc-finger and BTB domain-containing protein 17 (ZBTB17) as a novel interacting partner. ZBTB17 is a transcription factor that contains the peak association signal (rs10927875) at the replicated 1p36 cardiomyopathy locus. ZBTB17 expression protected cardiac myocytes from apoptosis in vitro and in a mouse model with cardiac myocyte-specific deletion of Zbtb17, which develops cardiomyopathy and fibrosis after biomechanical stress. ZBTB17 also regulated cardiac myocyte hypertrophy in vitro and in vivo in a calcineurin-dependent manner. CONCLUSIONS: We revealed new functions for ZBTB17 in the heart, a transcription factor that may play a role as a novel cardiomyopathy gene.


Assuntos
Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Proteínas Nucleares/genética , Animais , Proteínas de Ligação a DNA , Coração/fisiologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/fisiologia , Ratos , Estresse Fisiológico , Técnicas de Cultura de Tecidos , Ubiquitina-Proteína Ligases
8.
Cardiovasc Res ; 102(3): 396-406, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24667850

RESUMO

AIMS: Ventricular remodelling following myocardial infarction progressively leads to loss of contractile capacity and heart failure. Although calcineurin promotes maladaptive cardiac hypertrophy, we recently showed that the calcineurin splicing variant, CnAß1, has beneficial effects on the infarcted heart. However, whether this variant limits necrosis or improves remodelling is still unknown, precluding translation to the clinical arena. Here, we explored the effects and therapeutic potential of CnAß1 overexpression post-infarction. METHODS AND RESULTS: Double transgenic mice with inducible cardiomyocyte-specific overexpression of CnAß1 underwent left coronary artery ligation followed by reperfusion. Echocardiographic analysis showed depressed cardiac function in all infarcted mice 3 days post-infarction. Induction of CnAß1 overexpression 1 week after infarction improved function and reduced ventricular dilatation. CnAß1-overexpressing mice showed shorter, thicker scars, and reduced infarct expansion, accompanied by reduced myocardial remodelling. CnAß1 induced vascular endothelial growth factor (VEGF) expression in cardiomyocytes, which resulted in increased infarct vascularization. This paracrine angiogenic effect of CnAß1 was mediated by activation of the Akt/mammalian target of rapamycin pathway and VEGF. CONCLUSIONS: Our results indicate that CnAß1 exerts beneficial effects on the infarcted heart by promoting infarct vascularization and preventing infarct expansion. These findings emphasize the translational potential of CnAß1 for gene-based therapies.


Assuntos
Calcineurina/fisiologia , Terapia Genética , Infarto do Miocárdio/terapia , Remodelação Ventricular , Animais , Calcineurina/genética , Camundongos , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/fisiologia , Splicing de RNA , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA