Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 19(10): 2189-2201, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488552

RESUMO

Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.

2.
Theranostics ; 11(20): 9805-9820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815787

RESUMO

Background: Microglia and macrophages adopt a pro-inflammatory phenotype after spinal cord injury (SCI), what is thought to contribute to secondary tissue degeneration. We previously reported that this is due, in part, to the low levels of anti-inflammatory cytokines, such as IL-4. Since IL-13 and IL-4 share receptors and both cytokines drive microglia and macrophages towards an anti-inflammatory phenotype in vitro, here we studied whether administration of IL-13 and IL-4 after SCI leads to beneficial effects. Methods: We injected mice with recombinant IL-13 or IL-4 at 48 h after SCI and assessed their effects on microglia and macrophage phenotype and functional outcomes. We also performed RNA sequencing analysis of macrophages and microglia sorted from the injured spinal cords of mice treated with IL-13 or IL-4 and evaluated the metabolic state of these cells by using Seahorse technology. Results: We observed that IL-13 induced the expression of anti-inflammatory markers in microglia and macrophages after SCI but, in contrast to IL-4, it failed to mediate functional recovery. We found that these two cytokines induced different gene signatures in microglia and macrophages after SCI and that IL-4, in contrast to IL-13, shifted microglia and macrophage metabolism from glycolytic to oxidative phosphorylation. These findings were further confirmed by measuring the metabolic profile of these cells. Importantly, we also revealed that macrophages stimulated with IL-4 or IL-13 are not deleterious to neurons, but they become cytotoxic when oxidative metabolism is blocked. This suggests that the metabolic shift, from glycolysis to oxidative phosphorylation, is required to minimize the cytotoxic responses of microglia and macrophages. Conclusions: These results reveal that the metabolic fitness of microglia and macrophages after SCI contributes to secondary damage and that strategies aimed at boosting oxidative phosphorylation might be a novel approach to minimize the deleterious actions of microglia and macrophages in neurotrauma.


Assuntos
Interleucina-13/metabolismo , Interleucina-4/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Interleucina-13/imunologia , Interleucina-13/farmacologia , Interleucina-4/imunologia , Interleucina-4/farmacologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/fisiopatologia , Resultado do Tratamento
3.
Neurotherapeutics ; 18(2): 1113-1126, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786805

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) is a powerful neuroprotective growth factor. However, systemic or intrathecal administration of GDNF is associated with side effects. Here, we aimed to avoid this by restricting the transgene expression to the skeletal muscle by gene therapy. To specifically target most skeletal muscles in the mouse model of amyotrophic lateral sclerosis (ALS), SOD1G93A transgenic mice were intravenously injected with adeno-associated vectors coding for GDNF under the control of the desmin promoter. Treated and control SOD1G93A mice were evaluated by rotarod and nerve conduction tests from 8 to 20 weeks of age, and then histological and molecular analyses were performed. Muscle-specific GDNF expression delayed the progression of the disease in SOD1G93A female and male mice by preserving the neuromuscular function; increasing the number of innervated neuromuscular junctions, the survival of spinal motoneurons; and reducing glial reactivity in treated SOD1G93A mice. These beneficial actions are attributed to a paracrine protective mechanism from the muscle to the motoneurons by GDNF. Importantly, no adverse secondary effects were detected. These results highlight the potential of muscle GDNF-targeted expression for ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Músculo Esquelético/metabolismo , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Animais , Feminino , Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Esquelético/diagnóstico por imagem , Superóxido Dismutase/genética
4.
Immunohorizons ; 4(11): 754-761, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239358

RESUMO

IL-37 broadly suppresses inflammation in various disease models. However, studies of the regulation and role of IL-37 in psoriasis are limited and contradictive. Using transcriptome analysis, PCR, protein determination, and immunofluorescence, we demonstrated marked downregulation of IL-37 in biopsies from human lesional psoriasis skin compared with paired samples of nonlesional skin. Immunofluorescence analysis showed that IL-37 was localized to stratum granulosum of the epidermis. TNF-α stimulation of normal human epidermal keratinocytes led to increased IL37 expression through a p38 MAPK-mediated mechanism, whereas IL-17A, IL-17C, IL-17F, and IL-22 acted suppressively. Intradermal injection with recombinant human IL-37 into imiquimod-induced psoriasis skin of C57BL/6J mice demonstrated a trend toward a protective effect, however NS. Altogether, these results demonstrate that IL-37 is downregulated in human lesional psoriasis skin. This may be a consequence of the loss of stratum granulosum, but key cytokines in the development of psoriasis also seem to contribute to this downregulation.


Assuntos
Interleucina-17/metabolismo , Interleucina-1/metabolismo , Queratinócitos/patologia , Psoríase/patologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Imiquimode , Inflamação/metabolismo , Interleucina-1/genética , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Stem Cell Res Ther ; 11(1): 53, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32033585

RESUMO

BACKGROUND: The simultaneous contribution of several etiopathogenic disturbances makes amyotrophic lateral sclerosis (ALS) a fatal and challenging disease. Here, we studied two different cell therapy protocols to protect both central and peripheral nervous system in a murine model of ALS. METHODS: Since ALS begins with a distal axonopathy, in a first assay, we performed injection of bone marrow cells into two hindlimb muscles of transgenic SOD1G93A mice. In a second study, we combined intramuscular and intraspinal injection of bone marrow cells. Fluorescence-activated cell sorting was used to assess the survival of the transplanted cells into the injected tissues. The mice were assessed from 8 to 16 weeks of age by means of locomotion and electrophysiological tests. After follow-up, the spinal cord was processed for analysis of motoneuron survival and glial cell reactivity. RESULTS: We found that, after intramuscular injection, bone marrow cells were able to engraft within the muscle. However, bone marrow cell intramuscular injection failed to promote a general therapeutic effect. In the second approach, we found that bone marrow cells had limited survival in the spinal cord, but this strategy significantly improved motor outcomes. Moreover, we also found that the dual cell therapy tended to preserve spinal motoneurons at late stages of the disease and to reduce microgliosis, although this did not prolong mice survival. CONCLUSION: Overall, our findings suggest that targeting more than one affected area of the motor system at once with bone marrow cell therapy results in a valuable therapeutic intervention for ALS.


Assuntos
Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Superóxido Dismutase-1/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Feminino , Injeções Intramusculares , Injeções Espinhais , Camundongos , Camundongos Transgênicos
6.
Front Immunol ; 10: 2578, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736980

RESUMO

IL-1ß and IL-18 are pro-inflammatory cytokines that are linked to inflammation. Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is involved in the maturation and secretion of IL-1ß and IL-18 and, thus, plays a key role in the pathogenesis of many inflammatory conditions, including multiple sclerosis (MS). OLT1177™ (Dapansutrile) is a newly developed drug that is safe in humans and inhibits specifically the NLRP3 inflammasome. In the present study, we investigated whether OLT1177 exerts therapeutic effects in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We found that EAE mice fed an OLT1177-enriched diet prophylactically were significantly protected against functional deficits and demyelination in the spinal cord. We also demonstrated that prophylactic oral administration of OLT1177 led to marked reduction (~2- to 3-fold) in the protein levels of IL-1ß and IL-18, as well as, IL-6 and TNFα, in the spinal cord of EAE mice. Moreover, prophylactic oral administration of OLT1177 significantly attenuated the infiltration of CD4 T cells and macrophages in the spinal cord. We also demonstrated that oral administration of OLT1177, starting at disease onset, resulted in significant amelioration of the clinical signs of EAE. Overall, these first data suggest that OLT1177 could have clinical benefit for the treatment of MS in humans.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Nitrilas/uso terapêutico , Administração Oral , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/patologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia , Medula Espinal/patologia
7.
J Neuroimmunol ; 321: 97-108, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29957394

RESUMO

The past decade has revealed much about the complexity of the local inflammatory response after spinal cord injury (SCI). A major challenge is to distinguish between microglia and monocyte-derived macrophages (MDMs) to determine their phenotype and function. Transcriptome studies have revealed microglia-selective genes but are still limited in scope because many markers are downregulated after injury. Additionally, new genetic reporter mice are available to study microglia and MDMs. There is more evidence now for the plasticity and heterogeneity of microglia and MDMs. We also discuss the role of neutrophils that are the first peripheral cells to enter the injured CNS.


Assuntos
Imunidade Celular/fisiologia , Células Mieloides/imunologia , Traumatismos da Medula Espinal/imunologia , Animais , Humanos , Macrófagos , Microglia/imunologia , Microglia/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Células Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Traumatismos da Medula Espinal/metabolismo
8.
Brain Behav Immun ; 73: 416-426, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29870752

RESUMO

The interaction between CD200 and its receptor CD200R1 is among the central regulators of microglia and macrophage phenotype. However, it remains to be established whether, in the context of a traumatic CNS injury, CD200R1 act as a negative regulator of these particular innate immune cells, and if the exogenous delivery of CD200 may ameliorate neurological deficits. In the present study, we first evaluated whether preventing the local interaction between the pair CD200-CD200R1, by using a selective blocking antibody against CD200R1, has a role on functional and inflammatory outcome after contusion-induced spinal cord injury (SCI) in mice. The injection of the αCD200R1, but not control IgG1, into the lesioned spinal cord immediately after the SCI worsened locomotor performance and exacerbated neuronal loss and demyelination. At the neuroimmunological level, we observed that microglial cells and macrophages showed increased levels of iNOS and Ly6C upon CD200R1 blockade, indicating that the disruption of CD200R1 drove these cells towards a more pro-inflammatory phenotype. Moreover, although CD200R1 blockade had no effect in the initial infiltration of neutrophils into the lesioned spinal cord, it significantly impaired their clearance, which is a key sign of excessive inflammation. Interestingly, intraparenchymal injection of recombinant CD200-His immediately after the injury induced neuroprotection and robust and long-lasting locomotor recovery. In conclusion, this study reveals that interaction of CD200-CD200R1 plays a crucial role in limiting inflammation and lesion progression after SCI, and that boosting the stimulation of this pathway may constitute a new therapeutic approach.


Assuntos
Antígenos CD/fisiologia , Receptores de Orexina/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Antígenos CD/metabolismo , Quimiocinas/metabolismo , Feminino , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neuroimunomodulação/imunologia , Neuroimunomodulação/fisiologia , Neutrófilos/metabolismo , Receptores de Orexina/metabolismo , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia
9.
J Neurosci ; 37(48): 11731-11743, 2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29109234

RESUMO

Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI.SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed resolution leads to detrimental effects, including propagated tissue damage and impaired wound healing, as occurs after spinal cord injury (SCI). We report that inflammation after SCI is dysregulated in part due to inappropriate synthesis of proresolving lipid mediators. We demonstrate that the administration of the resolution agonist referred to as maresin 1 (MaR1) after SCI actively propagates resolution processes at the lesion site and improves neurological outcome. MaR1 is identified as an interventional candidate to attenuate dysregulated lesional inflammation and to restore functional recovery after SCI.


Assuntos
Anti-Inflamatórios/administração & dosagem , Ácidos Docosa-Hexaenoicos/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Vértebras Torácicas
10.
Glia ; 64(12): 2079-2092, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27470986

RESUMO

Macrophages and microglia play a key role in the maintenance of nervous system homeostasis. However, upon different challenges, they can adopt several phenotypes, which may lead to divergent effects on tissue repair. After spinal cord injury (SCI), microglia and macrophages show predominantly pro-inflammatory activation and contribute to tissue damage. However, the factors that hamper their conversion to an anti-inflammatory state after SCI, or to other protective phenotypes, are poorly understood. Here, we show that IL-4 protein levels are undetectable in the spinal cord after contusion injury, which likely favors microglia and macrophages to remain in a pro-inflammatory state. We also demonstrate that a single delayed intraspinal injection of IL-4, 48 hours after SCI, induces increased expression of M2 marker in microglia and macrophages. We also show that delayed injection of IL-4 leads to the appearance of resolution-phase macrophages, and that IL-4 enhances resolution of inflammation after SCI. Interestingly, we provide clear evidence that delayed administration of IL-4 markedly improves functional outcomes and reduces tissue damage after contusion injury. It is possible that these improvements are mediated by the presence of macrophages with M2 markers and resolution-phase macrophages. These data suggest that therapies aimed at increasing IL-4 levels could be valuable for the treatment of acute SCI, for which there are currently no effective treatments. GLIA 2016;64:2079-2092.


Assuntos
Interleucina-4/farmacologia , Macrófagos/metabolismo , Microglia/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Arginase/metabolismo , Citocinas/metabolismo , Potencial Evocado Motor/efeitos dos fármacos , Potencial Evocado Motor/fisiologia , Feminino , Citometria de Fluxo , Interleucina-4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/fisiopatologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Superfície Celular/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA