RESUMO
Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.
Assuntos
SARS-CoV-2 , Titânio , Raios Ultravioleta , Titânio/química , Titânio/efeitos da radiação , SARS-CoV-2/efeitos da radiação , SARS-CoV-2/química , Inativação de Vírus/efeitos da radiação , Inativação de Vírus/efeitos dos fármacos , Humanos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/prevenção & controle , Adsorção , Propriedades de SuperfícieRESUMO
Microbial rhodopsins are photoreceptor proteins that convert light into biological signals or energy. Proteins of the xanthorhodopsin family are common in eukaryotic photosynthetic plankton including diatoms. However, their biological role in these organisms remains elusive. Here we report on a xanthorhodopsin variant (FcR1) isolated from the polar diatom Fragilariopsis cylindrus. Applying a combination of biophysical, biochemical and reverse genetics approaches, we demonstrate that FcR1 is a plastid-localized proton pump which binds the chromophore retinal and is activated by green light. Enhanced growth of a Thalassiora pseudonana gain-of-function mutant expressing FcR1 under iron limitation shows that the xanthorhodopsin proton pump supports growth when chlorophyll-based photosynthesis is iron-limited. The abundance of xanthorhodopsin transcripts in natural diatom communities of the surface oceans is anticorrelated with the availability of dissolved iron. Thus, we propose that these proton pumps convey a fitness advantage in regions where phytoplankton growth is limited by the availability of dissolved iron.
Assuntos
Diatomáceas , Diatomáceas/metabolismo , Ferro/metabolismo , Ecossistema , Biomassa , Oceanos e Mares , Proteínas/metabolismo , Bombas de Próton/metabolismoRESUMO
Proton-dependent oligopeptide transporters (POTs) are promiscuous transporters of the major facilitator superfamily that constitute the main route of entry for a wide range of dietary peptides and orally administrated peptidomimetic drugs. Given their clinical and pathophysiological relevance, several POT homologs have been studied extensively at the structural and molecular level. However, the molecular basis of recognition and transport of diverse peptide substrates has remained elusive. We present 14 X-ray structures of the bacterial POT DtpB in complex with chemically diverse di- and tripeptides, providing novel insights into the plasticity of the conserved central binding cavity. We analyzed binding affinities for more than 80 peptides and monitored uptake by a fluorescence-based transport assay. To probe whether all 8400 natural di- and tripeptides can bind to DtpB, we employed state-of-the-art molecular docking and machine learning and conclude that peptides with compact hydrophobic residues are the best DtpB binders.
Assuntos
Proteínas de Membrana Transportadoras , Peptídeos , Simulação de Acoplamento Molecular , Modelos Moleculares , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismoRESUMO
The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifiers PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined is a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection. IMPORTANCE With the currently available antibiotics, the treatment of TB takes months. The slow response to treatment is caused by antibiotic tolerance, which is especially common among bacteria that form biofilms. Such biofilms are composed of bacterial cells surrounded by the extracellular matrix. Both the matrix and the dormant lifestyle of the bacterial cells are thought to hinder the efficacy of antibiotics. To be able to develop faster-acting treatments against TB, the biofilm forms of mycobacteria deserve specific attention. In this work, we characterize the protein composition of Mmr biofilms in bacterial cultures and in mycobacteria extracted from infected adult zebrafish. We identify abundant surface-exposed targets and develop the first sybodies that bind to mycobacterial biofilms. As nanobodies can be linked to other therapeutic compounds, in the future, they can provide means to target therapies to biofilms.
Assuntos
Mycobacterium marinum , Anticorpos de Domínio Único , Tuberculose , Animais , Proteômica , Peixe-Zebra , Antibacterianos , Tuberculose/microbiologia , BiofilmesRESUMO
The cell adhesion molecule L1 (L1CAM, L1 in short) plays crucial roles during neural development, regeneration after injury, synapse formation, synaptic plasticity and tumor cell migration. L1 belongs to the immunoglobulin superfamily and comprises in its extracellular part six immunoglobulin (Ig)-like domains and five fibronectin type III homologous repeats (FNs). The second Ig-like domain has been validated for self- (so-called homophilic) binding between cells. Antibodies against this domain inhibit neuronal migration in vitro and in vivo. The fibronectin type III homologous repeats FN2 and FN3 bind small molecule agonistic L1 mimetics and contribute to signal transduction. FN3 has a stretch of 25 amino acids that can be triggered with a monoclonal antibody, or the L1 mimetics, to enhance neurite outgrowth and neuronal cell migration in vitro and in vivo. To correlate the structural features of these FNs with function, we determined a high-resolution crystal structure of a FN2FN3 fragment, which is functionally active in cerebellar granule cells and binds several mimetics. The structure illustrates that both domains are connected by a short linker sequence allowing a flexible and largely independent organization of both domains. This becomes further evident by comparing the X-ray crystal structure with models derived from Small-Angle X-ray Scattering (SAXS) data for FN2FN3 in solution. Based on the X-ray crystal structure, we identified five glycosylation sites which we believe are crucial for folding and stability of these domains. Our study signifies an advance in the understanding of structure-functional relationships of L1.
Assuntos
Fibronectinas , Molécula L1 de Adesão de Célula Nervosa , Fibronectinas/fisiologia , Raios X , Espalhamento a Baixo Ângulo , Difração de Raios X , Anticorpos Monoclonais , Adesão Celular/fisiologia , NeuritosRESUMO
A crucial bottleneck in membrane protein structural biology is the difficulty in identifying a detergent that can maintain the stability and functionality of integral membrane proteins (IMPs). Detergents are poor membrane mimics, and their common use in membrane protein crystallography may be one reason for the challenges in obtaining high-resolution crystal structures of many IMP families. Lipid-like peptides (LLPs) have detergent-like properties and have been proposed as alternatives for the solubilization of Gâ protein-coupled receptors and other membrane proteins. Here, we systematically analyzed the stabilizing effect of LLPs on integral membrane proteins of different families. We found that LLPs could significantly stabilize detergent-solubilized IMPs in vitro. This stabilizing effect depended on the chemical nature of the LLP and the intrinsic stability of a particular IMP in the detergent. Our results suggest that screening a subset of LLPs is sufficient to stabilize a particular IMP, which can have a substantial impact on the crystallization and quality of the crystal.
Assuntos
Proteínas de Membrana/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Cristalização , Detergentes/química , Fluorometria , Lipídeos/química , Proteínas de Membrana/química , Peptídeos/química , Ligação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , TemperaturaRESUMO
Major facilitator superfamily (MFS) peptide transporters (typically referred to as PepT, POT or PTR transporters) mediate the uptake of di- and tripeptides, and so play an important dietary role in many organisms. In recent years, a better understanding of the molecular basis for this process has emerged, which is in large part due to a steep increase in structural information. Yet, the conformational transitions underlying the transport mechanism are still not fully understood, and additional data is therefore needed. Here we report in detail the detergent screening, crystallization, experimental MIRAS phasing, and refinement of the peptide transporter PepTSt from Streptococcus thermophilus. The space group is P3121, and the protein is crystallized in a monomeric inward facing form. The binding site is likely to be somewhat occluded, as the lobe encompassing transmembrane helices 10 and 11 is markedly bent towards the central pore of the protein, but the extent of this potential occlusion could not be determined due to disorder at the apex of the lobe. Based on structural comparisons with the seven previously determined P212121 and C2221 structures of inward facing PepTSt, the structural flexibility as well as the conformational changes mediating transition between the inward open and inward facing occluded states are discussed. In conclusion, this report improves our understanding of the structure and conformational cycle of PepTSt, and can furthermore serve as a case study, which may aid in supporting future structure determinations of additional MFS transporters or other integral membrane proteins.
Assuntos
Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Conformação Proteica , Streptococcus thermophilus/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Multimerização Proteica , Estabilidade Proteica , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Members of the major facilitator superfamily (MFS) of transport proteins are essential for the movement of a wide range of substrates across biomembranes. As this transport requires a series of conformational changes, structures of MFS transporters captured in different conformational states are needed to decipher the transport mechanism. Recently, a large number of MFS transporter structures have been determined, which has provided us with an unprecedented opportunity to understand general aspects of the transport mechanism. We propose an updated model for the conformational cycle of MFS transporters, the 'clamp-and-switch model', and discuss the role of so-called 'gating residues' and the substrate in modulating these conformational changes.
Assuntos
Doenças Autoimunes/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Regulação Alostérica , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Doenças Autoimunes/genética , Doenças Autoimunes/patologia , Bactérias/genética , Bactérias/metabolismo , Transporte Biológico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/patologia , Cristalografia por Raios X , Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/ultraestrutura , Neoplasias/genética , Neoplasias/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Estrutura Secundária de Proteína , Estrutura Terciária de ProteínaRESUMO
Protein phosphatase 2A (PP2A) is a highly abundant heterotrimeric Ser/Thr phosphatase involved in the regulation of a variety of signaling pathways. The PP2A phosphatase activator (PTPA) is an ATP-dependent activation chaperone, which plays a key role in the biogenesis of active PP2A. The C-terminal tail of the catalytic subunit of PP2A is highly conserved and can undergo a number of posttranslational modifications that serve to regulate the function of PP2A. Here we have studied structurally the interaction of PTPA with the conserved C-terminal tail of the catalytic subunit carrying different posttranslational modifications. We have identified an additional interaction site for the invariant C-terminal tail of the catalytic subunit on PTPA, which can be modulated via posttranslational modifications. We show that phosphorylation of Tyr307(PP2A-C) or carboxymethylation of Leu309(PP2A-C) abrogates or diminishes binding of the C-terminal tail, whereas phosphorylation of Thr304(PP2A-C) is of no consequence. We suggest that the invariant C-terminal residues of the catalytic subunit can act as affinity enhancer for different PP2A interaction partners, including PTPA, and a different 'code' of posttranslational modifications can favour interactions to one subunit over others.
Assuntos
Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2/química , Proteína Fosfatase 2/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Biocatálise , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Fosfoproteínas Fosfatases/química , Ligação Proteica , Conformação ProteicaRESUMO
SlpA is a 2-domain protein consisting of an FK506-binding protein (FKBP) domain that harbors the peptidyl-prolyl cis/trans-isomerase (PPIase) active site and a small insert-in-flap (IF) domain that endows the protein with chaperone activity. We have determined the structure of SlpA from Escherichia coli at 1.35-Å resolution. The overall structure is similar to other known structures of the FKBP-IF subfamily. However, by serendipity, the linker region of the purification tag binds in the chaperone binding groove of the IF domain, making this the first structure of an FKBP-IF protein in complex with a mimic of an unfolded chaperone substrate. The linker binds by ß-sheet augmentation, thus completing the incomplete ß barrel of the IF domain and shielding a considerable hydrophobic surface area from the solvent. Interestingly, a proline residue in trans configuration appears to be specifically recognized in a small pocket within the binding groove. Hence, the IF domain can preselect and prealign substrates with proline residues, which may explain how it enhances the catalytic efficiency and modulates the specificity of the FKBP domain in addition to its chaperone function. Based on pulldown results, we suggest that SlpA is likely to be involved in ribosome assembly.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Cristalografia por Raios X , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Ligação Proteica , Dobramento de Proteína , Ribossomos/metabolismoRESUMO
SlyD (sensitive to lysis D; product of the slyD gene) is a prolyl isomerase [peptidyl-prolyl cis/trans isomerase (PPIase)] of the FK506 binding protein (FKBP) type with chaperone properties. X-ray structures derived from three different crystal forms reveal that SlyD from Thermus thermophilus consists of two domains representing two functional units. PPIase activity is located in a typical FKBP domain, whereas chaperone function is associated with the autonomously folded insert-in-flap (IF) domain. The two isolated domains are stable and functional in solution, but the presence of the IF domain increases the PPIase catalytic efficiency of the FKBP domain by 2 orders of magnitude, suggesting that the two domains act synergistically to assist the folding of polypeptide chains. The substrate binding surface of SlyD from T. thermophilus was mapped by NMR chemical shift perturbations to hydrophobic residues of the IF domain, which exhibits significantly reduced thermodynamic stability according to NMR hydrogen/deuterium exchange and fluorescence equilibrium transition experiments. Based on structural homologies, we hypothesize that this is due to the absence of a stabilizing beta-strand, suggesting in turn a mechanism for chaperone activity by 'donor-strand complementation.' Furthermore, we identified a conserved metal (Ni(2+)) binding site at the C-terminal SlyD-specific helical appendix of the FKBP domain, which may play a role in metalloprotein assembly.
Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Metalochaperonas/química , Metalochaperonas/metabolismo , Thermus thermophilus/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/metabolismo , Estrutura Terciária de Proteína , Alinhamento de SequênciaRESUMO
A promising approach to unravel the relationship between sequence information, tertiary structure, and folding mechanism of proteins is the analysis of the folding behavior of proteins with low sequence identity but comparable tertiary structures. Ribonuclease A (RNase A) and its homologues, forming the RNase A superfamily, provide an excellent model system for respective studies. RNase A has been used extensively as a model protein for folding studies. However, little is known about the folding of homologous RNases. Here, we analyze the folding pathway of onconase, a homologous protein from the Northern leopard frog with great potential as a tumor therapeutic, by high-resolution techniques. Although onconase and RNase A significantly differ in the primary structure (28% sequence identity) and in thermodynamic stability (DeltaDeltaG = 20 kJ mol(-1)), both enzymes possess very similar tertiary structures. The present folding studies on onconase by rapid mixing techniques in combination with fluorescence and NMR spectroscopy allow the structural assignment of the three kinetic phases observed in stopped-flow fluorescence spectroscopy. After a slow peptidyl-prolyl cis-to-trans isomerization reaction in the unfolded state, ONC folds via an on-pathway intermediate to the native state. By quenched-flow hydrogen/deuterium exchange experiments coupled with 2D NMR spectroscopy, 31 amino acid residues were identified to be involved in the structure formation of the intermediate. Twelve of these residues are identical in the RNase A sequence, which is a significantly higher percentage (39%) than the overall 28% sequence identity. Moreover, the structure of this intermediate closely resembles two of the intermediates that occur early during the refolding of RNase A. Obviously, in spite of considerable differences in their amino acid sequence the initial folding events of both proteins are comparable, guided by a limited number of conserved residues.
Assuntos
Conformação Proteica , Dobramento de Proteína , Ribonuclease Pancreático/química , Ribonucleases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Dicroísmo Circular , Deutério , Dissulfetos/química , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutagênese Sítio-Dirigida , TermodinâmicaRESUMO
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.