Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.256
Filtrar
1.
Sci China Life Sci ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38811444

RESUMO

Generally shortened 3' UTR due to alternative polyadenylation (APA) is widely observed in cancer, but its regulation mechanisms for cancer are not well characterized. Here, with profiling of APA in colorectal cancer tissues and poly(A) signal editing, we firstly identified that the shortened 3' UTR of CTNNIBP1 in colorectal cancer promotes cell proliferation and migration. We found that liquid-liquid phase separation (LLPS) of PABPN1 is reduced albeit with higher expression in cancer, and the reduction of LLPS leads to the shortened 3' UTR of CTNNBIP1 and promotes cell proliferation and migration. Notably, the splicing factor SNRPD2 upregulated in colorectal cancer, can interact with glutamic-proline (EP) domain of PABPN1, and then disrupt LLPS of PABPN1, which attenuates the repression effect of PABPN1 on the proximal poly(A) sites. Our results firstly reveal a new regulation mechanism of APA by disruption of LLPS of PABPN1, suggesting that regulation of APA by interfering LLPS of 3' end processing factor may have the potential as a new way for the treatment of cancer.

2.
Int Immunopharmacol ; 136: 112340, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820962

RESUMO

BACKGROUND: Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-editing enzyme that significantly impacts cancer progression and various biological processes. The expression of ADAR1 mRNA has been examined in multiple cancer types using The Cancer Genome Atlas (TCGA) dataset, revealing distinct patterns in kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), and liver hepatocellular carcinoma (LIHC) compared to normal controls. However, the reasons for these differential expressions remain unclear. METHODS: In this study, we performed RT-PCR and western blotting (WB) to validate ADAR1 expression patterns in clinical tissue samples. Survival analysis and immune microenvironment analysis (including immune score and stromal score) were conducted using TCGA data to determine the specific cell types associated with ADAR1, as well as the key genes in those cell types. The relationship between ADAR1 and specific cell types' key genes was verified by immunohistochemistry (IHC), using clinical liver and kidney cancer samples. RESULTS: Our validation analysis revealed that ADAR1 expression was downregulated in KICH, KIRC, and KIRP, while upregulated in LIHC compared to normal tissues. Notably, a significant correlation was found between ADAR1 mRNA expression and patient prognosis, particularly in KIRC, KIRP, and LIHC. Interestingly, we observed a positive correlation between ADAR1 expression and stromal scores in KIRC, whereas a negative correlation was observed in LIHC. Cell type analysis highlighted distinct relationships between ADAR1 expression and the two stromal cell types, blood endothelial cells (BECs) and lymphatic endothelial cells (LECs), and further determined the signature gene claudin-5 (CLDN5), in KIRC and LIHC. Moreover, ADAR1 was inversely related with CLDN5 in KIRC (n = 26) and LIHC (n = 30) samples, verified via IHC. CONCLUSIONS: ADAR1 plays contrasting roles in LIHC and KIRC, associated with the enrichment of BECs and LECs within tumors. This study sheds light on the significant roles of stromal cells within the complex tumor microenvironment (TME) and provides new insights for future research in tumor immunotherapy and precision medicine.

3.
J Cancer ; 15(10): 3024-3033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706890

RESUMO

Background: This study aimed to investigate the safety and efficacy of preoperative targeted immunotherapy followed by surgical resection for hepatocellular carcinoma (HCC) patients with macrovascular invasion. Method: Clinical information of HCC patients with macrovascular invasion was collected from four medical centers. These patients were divided into two cohorts: the upfront surgery group (n=40) and the neoadjuvant group (n=22). Comparisons between the two groups were made with appropriate statistical methods. Results: HCC Patients with macrovascular invasion in the neoadjuvant group were associated with increased incidence of postoperative ascites (72.73% vs. 37.5%, P=0.008), but shorter postoperative hospital stay (10 days vs. 14 days, P=0.032). Furthermore, targeted immunotherapy followed by surgical resection significantly reduced the postoperative recurrence rate at both 3 months and 1 year (9% versus 28.9%, 32.1% versus 67.9%, respectively; P=0.018), but increased the postoperative nononcologic mortality rate within 1 year (20.1% vs. 2.8%; P= 0.036). Conclusion: For HCC patients with macrovascular invasion, preoperative targeted immunotherapy significantly decreased the postoperative tumor recurrence rate while maintaining relative safety, but such a treatment may also result in chronic liver damage and increased risk of nononcologic mortality.

4.
Mol Cancer Res ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747975

RESUMO

Small-cell lung cancer (SCLC) accounts for nearly 15% of all lung cancers. Although patients respond to first-line therapy readily, rapid relapse is inevitable, with few treatment options in the second-line setting. Here, we describe SCLC cell lines harboring amplification of MYC and MYCN, but not MYCL1 nor non-amplified MYC cell lines, exhibit superior sensitivity to treatment with the pan-BET bromodomain protein inhibitor Mivebresib (ABBV-075). Silencing MYC and MYCN partially rescued SCLC cell lines harboring these respective amplifications from the anti-proliferative effects of mivebresib. Further characterization of genome-wide binding of MYC, MYCN, and MYCL1 uncovered unique enhancer and epigenetic preferences. Implications: Our study suggests that chromatin landscapes could establish cell states with unique gene expression programs, conveying sensitivity to epigenetic inhibitors such as mivebresib.

5.
Genome Biol ; 25(1): 119, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741183

RESUMO

Numerous algorithms have been proposed to identify cell types in single-cell RNA sequencing data, yet a fundamental problem remains: determining associations between cells and phenotypes such as cancer. We develop SCIPAC, the first algorithm that quantitatively estimates the association between each cell in single-cell data and a phenotype. SCIPAC also provides a p-value for each association and applies to data with virtually any type of phenotype. We demonstrate SCIPAC's accuracy in simulated data. On four real cancerous or noncancerous datasets, insights from SCIPAC help interpret the data and generate new hypotheses. SCIPAC requires minimum tuning and is computationally very fast.


Assuntos
Algoritmos , Fenótipo , Análise de Célula Única , Análise de Célula Única/métodos , Humanos , Neoplasias/genética , Análise de Sequência de RNA/métodos
6.
EClinicalMedicine ; 72: 102629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745967

RESUMO

Background: Niraparib significantly prolonged progression-free survival versus placebo in patients with platinum-sensitive, recurrent ovarian cancer (PSROC), regardless of germline BRCA mutation (gBRCAm) status, in NORA. This analysis reports final data on overall survival (OS). Methods: This randomised, double-blind, placebo-controlled, phase 3 trial enrolled patients across 30 centres in China between 26 September 2017 and 2 February 2019 (clinicaltrials.gov, NCT03705156). Eligible patients had histologically confirmed, recurrent, (predominantly) high-grade serous epithelial ovarian cancer, fallopian tube carcinoma, or primary peritoneal carcinoma (no histological restrictions for those with gBRCAm) and had received ≥2 prior lines of platinum-based chemotherapy. Patients were randomised (2:1) to receive niraparib or placebo, with stratification by gBRCAm status, time to recurrence following penultimate platinum-based chemotherapy, and response to last platinum-based chemotherapy. Following a protocol amendment, the starting dose was individualised: 200 mg/day for patients with bodyweight <77 kg and/or platelet count <150 × 103/µL at baseline and 300 mg/day otherwise. OS was a secondary endpoint. Findings: Totally, 265 patients were randomised to receive niraparib (n = 177) or placebo (n = 88), and 249 (94.0%) received an individualised starting dose. As of 14 August 2023, median follow-up for OS was 57.9 months (IQR, 54.8-61.6). Median OS (95% CI) with niraparib versus placebo was 51.5 (41.4-58.9) versus 47.6 (33.3-not evaluable [NE]) months, with hazard ratio [HR] of 0.86 (95% CI, 0.60-1.23), in the overall population; 56.0 (36.1-NE) versus 47.6 (31.6-NE) months, with HR of 0.86 (95% CI, 0.46-1.58), in patients with gBRCAm; and 46.5 (41.0-NE) versus 46.9 (31.8-NE) months, with HR of 0.87 (95% CI, 0.56-1.35), in those without. No new safety signals were identified, and myelodysplastic syndromes/acute myeloid leukaemia occurred in three (1.7%) niraparib-treated patients. Interpretation: Niraparib maintenance therapy with an individualised starting dose demonstrated a favourable OS trend versus placebo in PSROC patients, regardless of gBRCAm status. Funding: Zai Lab (Shanghai) Co., Ltd; National Major Scientific and Technological Special Project for "Significant New Drugs Development" in 2018, China [grant number 2018ZX09736019].

7.
World J Hepatol ; 16(4): 537-549, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38689749

RESUMO

The tumor microenvironment is a complex network of cells, extracellular matrix, and signaling molecules that plays a critical role in tumor progression and metastasis. Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits. However, recent studies have shown that lymphatic endothelial cells (LECs) and blood endothelial cells (BECs) also play multifaceted roles in the tumor microenvironment beyond their structural functions, particularly in hepatocellular carcinoma (HCC). This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC, including their involvement in angiogenesis, immune modulation, lymphangiogenesis, and metastasis. By providing a detailed account of the complex interplay between LECs, BECs, and tumor cells, this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.

8.
J Inflamm Res ; 17: 3247-3257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800596

RESUMO

Objective: To investigate the prevalence, risk factors and prognosis of invasive pulmonary aspergillosis (IPA) in patients with anti-melanoma differentiation-associated gene 5 positive dermatomyositis (anti-MDA5+ DM). Methods: A retrospective analysis was conducted in anti-MDA5+ DM patients diagnosed between January 2016 and March 2023. Patients with lower respiratory tract specimens were categorized into IPA+ and IPA- groups based on the presence of IPA and their clinical characteristics and prognoses then compared. Results: Of the 415 patients diagnosed with anti-MDA5+ DM, 28 cases had IPA (prevalence rate of 6.7%) with Aspergillus fumigatus being the most common species. The patients were categorized into IPA+ (n=28) and IPA- (n=98) groups, with no significant age or gender-related differences (P>0.05). The IPA+ group had a lower lymphocyte count, particularly the CD4+ T-cell count, and reduced serum albumin and higher serum ferritin levels (P all<0.05). An elevated bronchoalveolar lavage fluid (BALF) galactomannan level was found to be the sole independent risk factor for the occurrence of IPA (adjusted OR=2.191, P=0.029) with a cut-off value of 0.585 and area under the curve of 0.779. The mortality rate in the IPA+ group was 25%. Compared to survivors, non-survivors in this group exhibited a higher incidence of rapidly progressive interstitial lung disease, lower lymphocyte counts, and increased co-infection with Pneumocystis jirovecii (P all<0.05). Conclusion: IPA was not rare in patients with anti-MDA5+ DM, with elevated BALF galactomannan levels being an independent risk factor for IPA occurrence. Clinicians must exercise vigilance to identify patients exhibiting the aforementioned risk factors.

9.
Phytochemistry ; 223: 114119, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705266

RESUMO

Six previously undescribed prenylated indole diketopiperazine alkaloids, talaromyines A-F (1-6), were isolated from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517. Their structures including absolute configurations were elucidated on the basis of comprehensive spectroscopic data including NMR, HR-ESI-MS, and electronic circular dichroism calculations, together with chemical analysis of hydrolysates. Compounds 1-5 represent the first example of spirocyclic indole diketopiperazines biosynthesized from the condensation of L-tryptophan and L-alanine. Compounds 2 and 4-5 showed selective inhibitory activities against phosphatases TCPTP and MEG2 with IC50 value of 17.9-29.7 µM, respectively. Compounds 4-5 exhibited mild cytotoxic activities against two human cancer cell lines H1975 and HepG-2.


Assuntos
Dicetopiperazinas , Talaromyces , Talaromyces/química , Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Dicetopiperazinas/isolamento & purificação , Humanos , Estrutura Molecular , Prenilação , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacologia , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Células Hep G2 , Proliferação de Células/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Linhagem Celular Tumoral
10.
Front Pharmacol ; 15: 1344786, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38783938

RESUMO

Introduction: Glycopyrrolate is commonly researched as a preoperative medication or in conjunction with cholinesterase inhibitors to counteract the lingering muscarinic effects of non-depolarizing muscarinic agents. However, studies have yielded inconsistent results regarding the superiority of glycopyrrolate over other anti-cholinergic drugs, such as atropine, particularly its effect on heart rate, blood pressure (BP), and glandular secretions. This study aimed to evaluate the differences in perioperative oral secretions, hemodynamics, and recovery quality with glycopyrrolate versus those with atropine before anesthesia induction in children undergoing tonsillectomy and adenoidectomy. Methods: In this prospective, single-center, randomized, double-blind, controlled trial, a total of 103 children were randomly assigned to group A (n = 51, glycopyrrolate 0.005 mg/kg) or B (n = 52, atropine 0.01 mg/kg). The follow-up anesthetic induction and maintenance protocols were the same in both groups. Vital signs, duration of surgery, extubation time, degree of wetness around the vocal cords during tracheal intubation, weight of oral secretions, and perioperative complications were recorded. Results: No significant differences were observed in the degree of wetness around the vocal cords during tracheal intubation, as well as in the weight of oral secretions, duration of surgery, or extubation time, between the two groups. The intraoperative and postoperative heart rates were lower in group A than in group B (110.18 ± 10.58 vs. 114.94 ± 11.14, p = 0.028; 96.96 ± 10.81 vs. 103.38 ± 10.09, p = 0.002). The differences observed in the intraoperative and preoperative heart rates were lower in group A than in group B (23.84 ± 9.62 vs. 29.65 ± 8.75, p = 0.002). The differences observed in the postoperative and preoperative heart rates were lower in group A than in group B (10.63 ± 9.97 vs. 18.09 ± 9.39, p = 0.000). Conclusion: Glycopyrrolate showed a smoother change in heart rate than atropine during and after tonsillectomy and adenoidectomy, with no effect on BP or recovery quality, and did not increase oral secretions. The findings indicate that glycopyrrolate can serve as an alternative to atropine to prevent secretions in anesthesia induction for tonsillectomy and adenoidectomy in children. Trial registration: This study was registered with the Chinese Clinical Trial Registry (Registration Number: ChiCTR2200063578; Date of Registration: 12/09/2022).

11.
Cells ; 13(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786019

RESUMO

Myeloid-derived suppressor cells (MDSCs) play an essential role in suppressing the antitumor activity of T lymphocytes in solid tumors, thus representing an attractive therapeutic target to enhance the efficacy of immunotherapy. However, the differences in protein expression between MDSCs and their physiological counterparts, particularly polymorphonuclear neutrophils (PMNs), remain inadequately characterized, making the specific identification and targeting of MDSCs difficult. PMNs and PMN-MDSCs share markers such as CD11b+CD14-CD15+/CD66b+, and some MDSC-enriched markers are emerging, such as LOX-1 and CD84. More proteomics studies are needed to identify the signature and markers for MDSCs. Recently, we reported the induced differentiation of isogenic PMNs or MDSCs (referred to as iPMNs and iMDSCs, respectively) from the human promyelocytic cell line HL60. Here, we profiled the global proteomics and membrane proteomics of these cells with quantitative mass spectrometry, which identified a 41-protein signature ("cluster 6") that was upregulated in iMDSCs compared with HL60 and iPMN. We further integrated our cell line-based proteomics data with a published proteomics dataset of normal human primary monocytes and monocyte-derived MDSCs induced by cancer-associated fibroblasts. The analysis identified a 38-protein signature that exhibits an upregulated expression pattern in MDSCs compared with normal monocytes or PMNs. These signatures may provide a hypothesis-generating platform to identify protein biomarkers that phenotypically distinguish MDSCs from their healthy counterparts, as well as potential therapeutic targets that impair MDSCs without harming normal myeloid cells.


Assuntos
Diferenciação Celular , Células Supressoras Mieloides , Neutrófilos , Proteômica , Humanos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/citologia , Neutrófilos/metabolismo , Neutrófilos/citologia , Proteômica/métodos , Células HL-60 , Linhagem Celular
12.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189108, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723697

RESUMO

Non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) are associated with a high mortality rate. Mutations in the V-Ki-ras2 Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) proto-oncogene GTPase (KRAS) are frequently observed in these cancers. Owing to its structural attributes, KRAS has traditionally been regarded as an "undruggable" target. However, recent advances have identified a novel mutational regulatory site, KRASG12C switch II, leading to the development of two KRASG12C inhibitors (adagrasib and sotorasib) that are FDA-approved. This groundbreaking discovery has revolutionized our understanding of the KRAS locus and offers treatment options for patients with NSCLC harboring KRAS mutations. Due to the presence of alternative resistance pathways, the use of KRASG12C inhibitors as a standalone treatment for patients with CRC is not considered optimal. However, the combination of KRASG12C inhibitors with other targeted drugs has demonstrated greater efficacy in CRC patients harboring KRAS mutations. Furthermore, NSCLC and CRC patients harboring KRASG12C mutations inevitably develop primary or acquired resistance to drug therapy. By gaining a comprehensive understanding of resistance mechanisms, such as secondary mutations of KRAS, mutations of downstream intermediates, co-mutations with KRAS, receptor tyrosine kinase (RTK) activation, Epithelial-Mesenchymal Transitions (EMTs), and tumor remodeling, the implementation of KRASG12C inhibitor-based combination therapy holds promise as a viable solution. Furthermore, the emergence of protein hydrolysis-targeted chimeras and molecular glue technologies has been facilitated by collaborative efforts in structural science and pharmacology. This paper aims to provide a comprehensive review of the recent advancements in various aspects related to the KRAS gene, including the KRAS signaling pathway, tumor immunity, and immune microenvironment crosstalk, as well as the latest developments in KRASG12C inhibitors and mechanisms of resistance. In addition, this study discusses the strategies used to address drug resistance in light of the crosstalk between these factors. In the coming years, there will likely be advancements in the development of more efficacious pharmaceuticals and targeted therapeutic approaches for treating NSCLC and CRC. Consequently, individuals with KRAS-mutant NSCLC may experience a prolonged response duration and improved treatment outcomes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Mutação , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Acetonitrilas , Piperazinas , Piridinas , Pirimidinas
13.
Nat Commun ; 15(1): 3976, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729948

RESUMO

Bleeding and thrombosis are known as common complications of polycythemia for a long time. However, the role of coagulation system in erythropoiesis is unclear. Here, we discover that an anticoagulant protein tissue factor pathway inhibitor (TFPI) plays an essential role in erythropoiesis via the control of heme biosynthesis in central macrophages. TFPI levels are elevated in erythroblasts of human erythroblastic islands with JAK2V617F mutation and hypoxia condition. Erythroid lineage-specific knockout TFPI results in impaired erythropoiesis through decreasing ferrochelatase expression and heme biosynthesis in central macrophages. Mechanistically, the TFPI interacts with thrombomodulin to promote the downstream ERK1/2-GATA1 signaling pathway to induce heme biosynthesis in central macrophages. Furthermore, TFPI blockade impairs human erythropoiesis in vitro, and normalizes the erythroid compartment in mice with polycythemia. These results show that erythroblast-derived TFPI plays an important role in the regulation of erythropoiesis and reveal an interplay between erythroblasts and central macrophages.


Assuntos
Eritroblastos , Eritropoese , Fator de Transcrição GATA1 , Heme , Lipoproteínas , Macrófagos , Policitemia , Policitemia/metabolismo , Policitemia/genética , Policitemia/patologia , Eritroblastos/metabolismo , Heme/metabolismo , Humanos , Animais , Lipoproteínas/metabolismo , Macrófagos/metabolismo , Camundongos , Fator de Transcrição GATA1/metabolismo , Fator de Transcrição GATA1/genética , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Trombomodulina/metabolismo , Trombomodulina/genética , Camundongos Knockout , Ferroquelatase/metabolismo , Ferroquelatase/genética , Masculino , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Feminino
14.
J Mater Chem B ; 12(21): 5207-5219, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38693796

RESUMO

Transarterial chemoembolization (TACE) is widely recognized as a non-surgical treatment approach for advanced liver cancer, combining chemotherapy with the blockage of blood vessels supplying the tumor. To enhance the efficacy of TACE and address chemotherapy resistance, there is growing interest in the development of multifunctional embolic microspheres. In this study, multifunctional PVA microspheres, which encapsulate MIT as a chemotherapeutic drug, PPY as a photothermal agent, and Fe3O4 as a chemodynamic therapy agent, were prepared successfully. The results demonstrated that the developed multifunctional PVA microspheres not only exhibit favorable drug release, photothermal therapy, and chemodynamic therapy performance, but also show a promising synergistic therapeutic effect both in vitro and in vivo. Consequently, the engineered multifunctional PVA microspheres hold tremendous promise for enhancing TACE effectiveness and have the potential to overcome limitations associated with traditional liver cancer treatments.


Assuntos
Quimioembolização Terapêutica , Neoplasias Hepáticas , Microesferas , Terapia Fototérmica , Álcool de Polivinil , Álcool de Polivinil/química , Quimioembolização Terapêutica/métodos , Humanos , Animais , Camundongos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacologia , Camundongos Endogâmicos BALB C , Tamanho da Partícula , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Camundongos Nus
15.
Heliyon ; 10(9): e30727, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38774095

RESUMO

Background: The FXYD domain-containing ion transport regulator 5 (FXYD5) gene is a cancer promoter. However, evidence for an association between FXYD5 and various types of cancer is still lacking. Using multi-omics bioinformatics, our study aimed to reveal the expression distribution, prognostic value, immune infiltration correlation, and molecular functions of FXYD5. Methods: Using pan-cancer multi-omics data (including The Cancer Genome Atlas, PrognoScan, Gene Expression Profiling Interactive Analysis, cBioPortal, Gene Expression Omnibus, TIMER and scTIME Portal), we assessed the differences in the expression and prognostic value of FXYD5 in malignant tumors. Furthermore, at the single-cell level, we analyze the expression distribution of FXYD5 across different cell types within the tumor microenvironment, and its relationship with the immune microenvironment. Finally, focusing on ovarian cancer, we conducted preliminary validation of the above findings using cell and molecular biology techniques. Results: Our results indicated that FXYD5 was up-regulated in various tumor types and was positively associated with tumor progression. We also revealed that FXYD5 was ubiquitously expressed in microenvironmental cells at the single-cell level, and its upregulation was associated with enhanced immune infiltration, cancer-associated fibroblast infiltration, and dysfunction of tumor-infiltrating cytotoxic T lymphocyte. Additionally, its expression was positively correlated with immune checkpoint genes, DNA mismatch repair genes, MSI (microsatellite instability) and TMB (tumor mutational burden) across various cancers. Its higher expression in cytotoxic T lymphocytes attenuated its ability to predict patient survival with PD-L1 (programmed death-ligand 1) blockade therapy, and FXYD5 was found to be a potential regulator of tumor immune escape and resistance to cancer immunotherapies. Based on GSEA (gene set enrichment analysis) and experimental verification, FXYD5 activated TGF-ß/SMAD signaling and drove EMT (epithelial-mesenchymal transition) to promote ovarian cancer progression. Conclusion: In summary, our study revealed that FXYD5-TGFß axis may coregulate the interaction between tumors, CAFs (carcinoma-associated fibroblasts) and immune cells to reshape the tumor immune microenvironment and promote tumorigenesis and tumor progression. Thus, FXYD5 could be used as an immune-related biomarker for diagnosing and predicting the prognosis of multiple cancer types. Therefore, our findings suggest that targeting FXYD5 in TME (tumor microenvironment) may be a promising therapeutic strategy.

16.
Cancer Res ; 84(10): 1597-1612, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38588411

RESUMO

Resistance to immune checkpoint blockade (ICB) therapy represents a formidable clinical challenge limiting the efficacy of immunotherapy. In particular, prostate cancer poses a challenge for ICB therapy due to its immunosuppressive features. A ketogenic diet (KD) has been reported to enhance response to ICB therapy in some other cancer models. However, adverse effects associated with continuous KD were also observed, demanding better mechanistic understanding and optimized regimens for using KD as an immunotherapy sensitizer. In this study, we established a series of ICB-resistant prostate cancer cell lines and developed a highly effective strategy of combining anti-PD1 and anti-CTLA4 antibodies with histone deacetylase inhibitor (HDACi) vorinostat, a cyclic KD (CKD), or dietary supplementation of the ketone body ß-hydroxybutyrate (BHB), which is an endogenous HDACi. CKD and BHB supplementation each delayed prostate cancer tumor growth as monotherapy, and both BHB and adaptive immunity were required for the antitumor activity of CKD. Single-cell transcriptomic and proteomic profiling revealed that HDACi and ketogenesis enhanced ICB efficacy through both cancer cell-intrinsic mechanisms, including upregulation of MHC class I molecules, and -extrinsic mechanisms, such as CD8+ T-cell chemoattraction, M1/M2 macrophage rebalancing, monocyte differentiation toward antigen-presenting cells, and diminished neutrophil infiltration. Overall, these findings illuminate a potential clinical path of using HDACi and optimized KD regimens to enhance ICB therapy for prostate cancer. SIGNIFICANCE: Optimized cyclic ketogenic diet and 1,3-butanediol supplementation regimens enhance the efficacy of immune checkpoint blockade in prostate cancer through epigenetic and immune modulations, providing dietary interventions to sensitize tumors to immunotherapy.


Assuntos
Dieta Cetogênica , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Inibidores de Checkpoint Imunológico , Neoplasias da Próstata , Masculino , Dieta Cetogênica/métodos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/dietoterapia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Epigênese Genética/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Vorinostat/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácido 3-Hidroxibutírico , Ensaios Antitumorais Modelo de Xenoenxerto , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores
17.
Mil Med Res ; 11(1): 22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622688

RESUMO

BACKGROUND: Liver ischemia/reperfusion (I/R) injury is usually caused by hepatic inflow occlusion during liver surgery, and is frequently observed during war wounds and trauma. Hepatocyte ferroptosis plays a critical role in liver I/R injury, however, it remains unclear whether this process is controlled or regulated by members of the DEAD/DExH-box helicase (DDX/DHX) family. METHODS: The expression of DDX/DHX family members during liver I/R injury was screened using transcriptome analysis. Hepatocyte-specific Dhx58 knockout mice were constructed, and a partial liver I/R operation was performed. Single-cell RNA sequencing (scRNA-seq) in the liver post I/R suggested enhanced ferroptosis by Dhx58hep-/-. The mRNAs and proteins associated with DExH-box helicase 58 (DHX58) were screened using RNA immunoprecipitation-sequencing (RIP-seq) and IP-mass spectrometry (IP-MS). RESULTS: Excessive production of reactive oxygen species (ROS) decreased the expression of the IFN-stimulated gene Dhx58 in hepatocytes and promoted hepatic ferroptosis, while treatment using IFN-α increased DHX58 expression and prevented ferroptosis during liver I/R injury. Mechanistically, DHX58 with RNA-binding activity constitutively associates with the mRNA of glutathione peroxidase 4 (GPX4), a central ferroptosis suppressor, and recruits the m6A reader YT521-B homology domain containing 2 (YTHDC2) to promote the translation of Gpx4 mRNA in an m6A-dependent manner, thus enhancing GPX4 protein levels and preventing hepatic ferroptosis. CONCLUSIONS: This study provides mechanistic evidence that IFN-α stimulates DHX58 to promote the translation of m6A-modified Gpx4 mRNA, suggesting the potential clinical application of IFN-α in the prevention of hepatic ferroptosis during liver I/R injury.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Animais , Camundongos , Diclorodifenil Dicloroetileno , Hepatócitos , Interferon-alfa , RNA , RNA Mensageiro
18.
Medicine (Baltimore) ; 103(15): e37411, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608087

RESUMO

BACKGROUND: Colonoscopy is a commonly performed gastroenterological procedure in patients associated with anxiety and pain. Various approaches have been used to provide sedation and analgesia during colonoscopy, including patient-controlled analgesia and sedation (PCAS). This study aims to evaluate the feasibility and efficiency of PCAS administered with propofol and remifentanil for colonoscopy. METHODS: This randomized controlled trial was performed in an authorized and approved endoscopy center. A total of 80 outpatients were recruited for the colonoscopy studies. Patients were randomly allocated into PCAS and total intravenous anesthesia (TIVA) groups. In the PCAS group, the dose of 0.1 ml/kg/min of the mixture was injected after an initial bolus of 3 ml mixture (1 ml containing 3 mg of propofol and 10 µg of remifentanil). Each 1 ml of bolus was delivered with a lockout time of 1 min. In the TIVA group, patients were administered fentanyl 1 µg/kg, midazolam 0.02 mg/kg, and propofol (dosage titrated). Cardiorespiratory parameters and auditory evoked response index were continuously monitored during the procedure. The recovery from anesthesia was assessed using the Aldrete scale and the Observer's Assessment of Alertness/Sedation Scale. The Visual Analogue Scale was used to assess the satisfaction of patients and endoscopists. RESULTS: No statistical differences were observed in the Visual Analogue Scale scores of the patients (9.58 vs 9.50) and the endoscopist (9.43 vs 9.30). A significant decline in the mean arterial blood pressure, heart rate, and auditory evoked response index parameters was recorded in the TIVA group (P < 0.05). The recovery time was significantly shorter in the PCAS group than in the TIVA group (P = 0.00). CONCLUSION: The combination of remifentanil and propofol could provide sufficient analgesia, better hemodynamic stability, lighter sedation, and faster recovery in the PCAS group of patients compared with the TIVA group.


Assuntos
Agnosia , Propofol , Humanos , Remifentanil , Midazolam , Analgesia Controlada pelo Paciente , Fentanila , Anestesia Intravenosa , Anestesia Geral , Colonoscopia , Dor
20.
Histol Histopathol ; : 18736, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38576381

RESUMO

Non-SMC Condensin II Complex Subunit D3 (NCAPD3) has been linked with the genesis and progression of multiple human cancers. Nevertheless, the scientific value and molecular process of NCAPD3 in glioma remain unclear. We explored the level of NCAPD3 expression in pan-cancer by multiple online databases. And we focused on the level and prognostic value of NCAPD3 expression in glioma by immunohistochemistry (IHC) and survival analysis. Meanwhile, we verified the relationship between NCAPD3, biological function and immune infiltration in glioma by Linkedomics and SangerBox databases. The expression of NCAPD3 was increased in a variety of cancers, including glioma. Its high expression was strongly related to WHO grade (P=0.002) and programmed cell death ligand 1 (PD-L1) expression of glioma (P=0.001). Patients with a high level of NCAPD3 expression had a lower overall survival (OS) in glioma than patients with a low level of NCAPD3 expression. Multivariate statistical analyses showed NCAPD3 expression (P=0.040), WHO grade (P<0.001), 1p/19q codeletion (P<0.001), recurrence (P<0.001), age (P=0.023), and chemotherapy status (P=0.001) were meaningful independent prognostic factors in patients with glioma. Furthermore, bioinformatics analysis proved that NCAPD3 has been linked to immune infiltration in glioma. High level of NCAPD3 expression may serve as a promising prognostic biomarker and correlate with dendritic cell infiltration, representing a potential immunotherapy target in glioma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA