Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
JCI Insight ; 8(3)2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36520540

RESUMO

In the progression phase of idiopathic pulmonary fibrosis (IPF), the normal alveolar structure of the lung is lost and replaced by remodeled fibrotic tissue and by bronchiolized cystic airspaces. Although these are characteristic features of IPF, knowledge of specific interactions between these pathological processes is limited. Here, the interaction of lung epithelial and lung mesenchymal cells was investigated in a coculture model of human primary airway epithelial cells (EC) and lung fibroblasts (FB). Single-cell RNA sequencing revealed that the starting EC population was heterogenous and enriched for cells with a basal cell signature. Furthermore, fractions of the initial EC and FB populations adopted distinct pro-fibrotic cell differentiation states upon cocultivation, resembling specific cell populations that were previously identified in lungs of patients with IPF. Transcriptomic analysis revealed active NF-κB signaling early in the cocultured EC and FB, and the identified NF-κB expression signatures were found in "HAS1 High FB" and "PLIN2+ FB" populations from IPF patient lungs. Pharmacological blockade of NF-κB signaling attenuated specific phenotypic changes of EC and prevented FB-mediated interleukin-6, interleukin-8, and CXC chemokine ligand 6 cytokine secretion, as well as collagen α-1(I) chain and α-smooth muscle actin accumulation. Thus, we identified NF-κB as a potential mediator, linking epithelial pathobiology with fibrogenesis.


Assuntos
Fibrose Pulmonar Idiopática , NF-kappa B , Humanos , NF-kappa B/metabolismo , Pulmão/patologia , Fibrose Pulmonar Idiopática/patologia , Fibrose , Transdução de Sinais , Colágeno Tipo I
7.
Oncotarget ; 7(18): 25983-6002, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27036020

RESUMO

An epithelial to mesenchymal transition (EMT) enables epithelial tumor cells to break out of the primary tumor mass and to metastasize. Understanding the molecular mechanisms driving EMT in more detail will provide important tools to interfere with the metastatic process. To identify pharmacological modulators and druggable targets of EMT, we have established a novel multi-parameter, high-content, microscopy-based assay and screened chemical compounds with activities against known targets. Out of 3423 compounds, we have identified 19 drugs that block transforming growth factor beta (TGFß)-induced EMT in normal murine mammary gland epithelial cells (NMuMG). The active compounds include inhibitors against TGFß receptors (TGFBR), Rho-associated protein kinases (ROCK), myosin II, SRC kinase and uridine analogues. Among the EMT-repressing compounds, we identified a group of inhibitors targeting multiple receptor tyrosine kinases, and biochemical profiling of these multi-kinase inhibitors reveals TGFBR as a thus far unknown target of their inhibitory spectrum. These findings demonstrate the feasibility of a multi-parameter, high-content microscopy screen to identify modulators and druggable targets of EMT. Moreover, the newly discovered "off-target" effects of several receptor tyrosine kinase inhibitors have important consequences for in vitro and in vivo studies and might beneficially contribute to the therapeutic effects observed in vivo.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Neoplasias Mamárias Animais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Receptores Proteína Tirosina Quinases , Receptor do Fator de Crescimento Transformador beta Tipo II , Fator de Crescimento Transformador beta/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA