Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Redox Biol ; 72: 103149, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581859

RESUMO

Macrophage cholesterol homeostasis is crucial for health and disease and has been linked to the lipid-peroxidizing enzyme arachidonate 15-lipoxygenase type B (ALOX15B), albeit molecular mechanisms remain obscure. We performed global transcriptome and immunofluorescence analysis in ALOX15B-silenced primary human macrophages and observed a reduction of nuclear sterol regulatory element-binding protein (SREBP) 2, the master transcription factor of cellular cholesterol biosynthesis. Consequently, SREBP2-target gene expression was reduced as were the sterol biosynthetic intermediates desmosterol and lathosterol as well as 25- and 27-hydroxycholesterol. Mechanistically, suppression of ALOX15B reduced lipid peroxidation in primary human macrophages and thereby attenuated activation of mitogen-activated protein kinase ERK1/2, which lowered SREBP2 abundance and activity. Low nuclear SREBP2 rendered both, ALOX15B-silenced and ERK1/2-inhibited macrophages refractory to SREBP2 activation upon blocking the NPC intracellular cholesterol transporter 1. These studies suggest a regulatory mechanism controlling macrophage cholesterol homeostasis based on ALOX15B-mediated lipid peroxidation and concomitant ERK1/2 activation.


Assuntos
Araquidonato 15-Lipoxigenase , Colesterol , Homeostase , Peroxidação de Lipídeos , Macrófagos , Proteína de Ligação a Elemento Regulador de Esterol 2 , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Humanos , Colesterol/metabolismo , Macrófagos/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Sistema de Sinalização das MAP Quinases , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Regulação da Expressão Gênica
2.
J Lipid Res ; 64(12): 100479, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37981011

RESUMO

Oncosterone (6-oxo-cholestane-3ß,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or ß- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3ß,5α,6ß-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3ß,26-diol), 27H-CT ((25R)-cholestane-3ß,5α,6ß,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3ß,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.


Assuntos
Neoplasias da Mama , Oxisteróis , Humanos , Feminino , Hidroxilação , Colesterol/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Carcinógenos/metabolismo , Colestanotriol 26-Mono-Oxigenase
3.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628805

RESUMO

Age and sex influence serum cholesterol levels, but the underlying mechanisms remain unclear. To investigate further, we measured cholesterol, precursors (surrogate synthesis markers), degradation products (oxysterols and bile acid precursors) in serum, the liver, jejunum, and ileum, as well as serum plant sterols (intestinal absorption markers) in male and female Wistar rats (4 and 24 months old). The analysis of histomorphometric and oxidative stress parameters (superoxide dismutase, catalase, glutathione-related enzyme activities, lipid peroxide, and protein carbonyl concentrations) in the liver and jejunum offered further insights into the age- and sex-related differences. The hepatic gene expression analysis included AR, ERα, and sex-specific growth hormone-regulated (Cyp2c11 and Cyp2c12) and thyroid-responsive (Dio1, Tbg, and Spot 14) genes by qPCR. We observed age-related changes in both sexes, with greater prominence in females. Aged females had significantly higher serum cholesterol (p < 0.05), jejunum cholesterol (p < 0.05), and serum plant sterols (p < 0.05). They exhibited poorer hepato-intestinal health compared with males, which was characterized by mild liver dysfunction (hydropic degeneration, increased serum ALT, p < 0.05, and decreased activity of some antioxidant defense enzymes, p < 0.05), mononuclear inflammation in the jejunal lamina propria, and age-related decreases in jejunal catalase and glutathione peroxidase activity (p < 0.05). Aged females showed increased levels of 27-hydroxycholesterol (p < 0.05) and upregulated ERα gene expression (p < 0.05) in the liver. Our study suggests that the more significant age-related increase in serum cholesterol in females is associated with poorer hepato-intestinal health and increased jejunal cholesterol absorption. The local increase in 27-hydroxycholesterol during aging might reduce the hepatoprotective effects of endogenous estrogen in the female liver.


Assuntos
Receptor alfa de Estrogênio , Fígado , Feminino , Masculino , Ratos , Animais , Catalase/genética , Ratos Wistar , Envelhecimento
4.
Nutrients ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447330

RESUMO

The nuclear liver X receptors (LXRα/ß) and peroxisome proliferator-activated receptors (PPARα/γ) are involved in the regulation of multiple biological processes, including lipid metabolism and inflammation. The activation of these receptors has been found to have neuroprotective effects, making them interesting therapeutic targets for neurodegenerative disorders such as Alzheimer's Disease (AD). The Asian brown seaweed Sargassum fusiforme contains both LXR-activating (oxy)phytosterols and PPAR-activating fatty acids. We have previously shown that dietary supplementation with lipid extracts of Sargassum fusiforme prevents disease progression in a mouse model of AD, without inducing adverse effects associated with synthetic pan-LXR agonists. We now determined the LXRα/ß- and PPARα/γ-activating capacity of lipid extracts of six European brown seaweed species (Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, and Sargassum muticum) and the Asian seaweed Sargassum fusiforme using a dual luciferase reporter assay. We analyzed the sterol and fatty acid profiles of the extracts by GC-MS and UPLC MS/MS, respectively, and determined their effects on the expression of LXR and PPAR target genes in several cell lines using quantitative PCR. All extracts were found to activate LXRs, with the Himanthalia elongata extract showing the most pronounced efficacy, comparable to Sargassum fusiforme, for LXR activation and transcriptional regulation of LXR-target genes. Extracts of Alaria esculenta, Fucus vesiculosus, and Saccharina latissima showed the highest capacity to activate PPARα, while extracts of Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, and Sargassum muticum showed the highest capacity to activate PPARγ, comparable to Sargassum fusiforme extract. In CCF-STTG1 astrocytoma cells, all extracts induced expression of cholesterol efflux genes (ABCG1, ABCA1, and APOE) and suppressed expression of cholesterol and fatty acid synthesis genes (DHCR7, DHCR24, HMGCR and SREBF2, and SREBF1, ACACA, SCD1 and FASN, respectively). Our data show that lipophilic fractions of European brown seaweeds activate LXRs and PPARs and thereby modulate lipid metabolism. These results support the potential of brown seaweeds in the prevention and/or treatment of neurodegenerative diseases and possibly cardiometabolic and inflammatory diseases via concurrent activation of LXRs and PPARs.


Assuntos
Doença de Alzheimer , Alga Marinha , Camundongos , Animais , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Doença de Alzheimer/tratamento farmacológico , PPAR alfa/genética , Espectrometria de Massas em Tandem , Receptores Citoplasmáticos e Nucleares/genética , Colesterol/metabolismo , Ácidos Graxos/metabolismo
5.
Arch Anim Nutr ; 77(2): 121-140, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37169773

RESUMO

Replacement of soybean oil by insect fat from Hermetia illucens (HI) has been reported to increase the proportions of saturated fatty acids (SFA) and decrease those of polyunsaturated fatty acids (PUFA) in total lipids of breast and thigh meat in broilers. Since the susceptibility of meat to oxidation is strongly dependent on its PUFA content, the present study hypothesised that replacement of soybean oil by HI larvae fat in broiler diets reduces the formation of lipid oxidation products, including oxidation products of cholesterol and phytosterols, in heat-processed breast muscle of broilers. To test this hypothesis, 100 male, 1-day-old Cobb 500 broilers were assigned to three groups and fed three different nutrient adequate diets, which varied only in the fat source (group HI-0: 0% HI larvae fat and 5% soybean oil; group HI-2.5: 2.5% HI larvae fat and 2.5% soybean oil; group HI-5.0: 5.0% HI larvae fat and 0% soybean oil), in a three-phase feeding system for 35 days. While the growth performance of the broilers was not different, the absolute and relative breast muscle weights were higher in group HI-5.0 than in group HI-0 (p < 0.05). The proportions of C12:0, C14:0, C14:1, C16:0, C16:1 and total SFA were higher and those of C18:1, C18:2 n-6, C18:3 n-3 and total PUFA were lower in breast muscle total lipids of group HI-5.0 than in groups HI-2.5 and HI-0 (p < 0.05). Lipidomic analysis of breast muscle revealed that the concentration of triacylglycerols was 46% and 53% lower in groups HI-2.5 and HI-5.0, respectively, than in group HI-0 (p < 0.05), whereas all other lipid classes detected did not differ among groups. Concentrations of thiobarbituric acid-reactive substances, 7α-hydroxycholesterol, 7ß-hydroxycholesterol and total cholesterol oxidation products in heat-processed breast muscle were lower in group HI-5.0 than in group HI-0 (p < 0.05). Concentrations of oxidation products of phytosterols in heat-processed breast muscle were generally much lower than those of cholesterol oxidation products and did not differ between the three groups of broilers. In conclusion, complete replacement of soybean oil with HI larvae fat in broiler diets strongly alters the fatty acid composition of breast muscle total lipids and reduce lipid oxidation of the breast muscle during heat-processing.


Assuntos
Dípteros , Fitosteróis , Animais , Masculino , Dieta/veterinária , Óleo de Soja , Lipidômica , Larva , Temperatura Alta , Galinhas/fisiologia , Ração Animal/análise , Ácidos Graxos , Colesterol/análise , Músculos Peitorais/química
6.
Acta Neuropathol ; 146(2): 353-368, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119330

RESUMO

Hereditary spastic paraplegias (HSP) are rare, inherited neurodegenerative or neurodevelopmental disorders that mainly present with lower limb spasticity and muscle weakness due to motor neuron dysfunction. Whole genome sequencing identified bi-allelic truncating variants in AMFR, encoding a RING-H2 finger E3 ubiquitin ligase anchored at the membrane of the endoplasmic reticulum (ER), in two previously genetically unexplained HSP-affected siblings. Subsequently, international collaboration recognized additional HSP-affected individuals with similar bi-allelic truncating AMFR variants, resulting in a cohort of 20 individuals from 8 unrelated, consanguineous families. Variants segregated with a phenotype of mainly pure but also complex HSP consisting of global developmental delay, mild intellectual disability, motor dysfunction, and progressive spasticity. Patient-derived fibroblasts, neural stem cells (NSCs), and in vivo zebrafish modeling were used to investigate pathomechanisms, including initial preclinical therapy assessment. The absence of AMFR disturbs lipid homeostasis, causing lipid droplet accumulation in NSCs and patient-derived fibroblasts which is rescued upon AMFR re-expression. Electron microscopy indicates ER morphology alterations in the absence of AMFR. Similar findings are seen in amfra-/- zebrafish larvae, in addition to altered touch-evoked escape response and defects in motor neuron branching, phenocopying the HSP observed in patients. Interestingly, administration of FDA-approved statins improves touch-evoked escape response and motor neuron branching defects in amfra-/- zebrafish larvae, suggesting potential therapeutic implications. Our genetic and functional studies identify bi-allelic truncating variants in AMFR as a cause of a novel autosomal recessive HSP by altering lipid metabolism, which may potentially be therapeutically modulated using precision medicine with statins.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Paraplegia Espástica Hereditária , Animais , Humanos , Paraplegia Espástica Hereditária/tratamento farmacológico , Paraplegia Espástica Hereditária/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Peixe-Zebra , Mutação , Neurônios Motores , Receptores do Fator Autócrino de Motilidade/genética
7.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36674804

RESUMO

The nuclear receptors-liver X receptors (LXR α and ß) are potential therapeutic targets in cardiovascular and neurodegenerative diseases because of their key role in the regulation of lipid homeostasis and inflammatory processes. Specific oxy(phyto)sterols differentially modulate the transcriptional activity of LXRs providing opportunities to develop compounds with improved therapeutic characteristics. We isolated oxyphytosterols from Sargassum fusiforme and synthesized sidechain oxidized sterol derivatives. Five 24-oxidized sterols demonstrated a high potency for LXRα/ß activation in luciferase reporter assays and induction of LXR-target genes APOE, ABCA1 and ABCG1 involved in cellular cholesterol turnover in cultured cells: methyl 3ß-hydroxychol-5-en-24-oate (S1), methyl (3ß)-3-aldehydeoxychol-5-en-24-oate (S2), 24-ketocholesterol (S6), (3ß,22E)-3-hydroxycholesta-5,22-dien-24-one (N10) and fucosterol-24,28 epoxide (N12). These compounds induced SREBF1 but not SREBP1c-mediated lipogenic genes such as SCD1, ACACA and FASN in HepG2 cells or astrocytoma cells. Moreover, S2 and S6 enhanced cholesterol efflux from HepG2 cells. All five oxysterols induced production of the endogenous LXR agonists 24(S)-hydroxycholesterol by upregulating the CYP46A1, encoding the enzyme converting cholesterol into 24(S)-hydroxycholesterol; S1 and S6 may also act via the upregulation of desmosterol production. Thus, we identified five novel LXR-activating 24-oxidized sterols with a potential for therapeutic applications in neurodegenerative and cardiovascular diseases.


Assuntos
Doenças Neurodegenerativas , Fitosteróis , Humanos , Receptores X do Fígado , Esteróis/farmacologia , Receptores Nucleares Órfãos/genética , Hidroxicolesteróis , Doenças Neurodegenerativas/tratamento farmacológico , Colesterol
8.
Front Immunol ; 12: 716357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489968

RESUMO

Lifestyle- and genetically induced disorders related to disturbances in cholesterol metabolism have shown the detrimental impact of excessive cholesterol levels on a plethora of pathological processes such as inflammation. In this context, two-hydroxypropyl-ß-cyclodextrin (CD) is increasingly considered as a novel pharmacological compound to decrease cellular cholesterol levels due to its ability to increase cholesterol solubility. However, recent findings have reported contra-indicating events after the use of CD questioning the clinical applicability of this compound. Given its potential as a therapeutic compound in metabolic inflammatory diseases, in this study, we evaluated the inflammatory effects of CD administration in the context of cholesterol-induced metabolic inflammation in vivo and in vitro. The inflammatory and cholesterol-depleting effects of CD were first investigated in low-density lipoprotein receptor knockout (Ldlr-/ ) mice that were transplanted with Npc1nih or Npc1wt bone marrow and were fed either regular chow or a high-fat, high-cholesterol (HFC) diet for 12 weeks, thereby creating an extreme model of lysosomal cholesterol-induced metabolic inflammation. In the final three weeks, these mice received daily injections of either control (saline) or CD subcutaneously. Subsequently, the inflammatory properties of CD were investigated in vitro in two macrophage cell lines and in murine bone marrow-derived macrophages (BMDMs). While CD administration improved cholesterol mobilization outside lysosomes in BMDMs, an overall pro-inflammatory profile was observed after CD treatment, evidenced by increased hepatic inflammation in vivo and a strong increase in cytokine release and inflammatory gene expression in vitro in murine BMDMs and macrophages cell lines. Nevertheless, this CD-induced pro-inflammatory profile was time-dependent, as short term exposure to CD did not result in a pro-inflammatory response in BMDM. While CD exerts desired cholesterol-depleting effects, its inflammatory effect is dependent on the exposure time. As such, using CD in the clinic, especially in a metabolic inflammatory context, should be closely monitored as it may lead to undesired, pro-inflammatory side effects.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Inflamação/etiologia , 2-Hidroxipropil-beta-Ciclodextrina/efeitos adversos , Animais , Biomarcadores , Linhagem Celular , Colesterol/sangue , Colesterol/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Receptores de LDL/genética , Receptores de LDL/metabolismo
9.
Int J Hyperthermia ; 38(2): 65-74, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34420445

RESUMO

INTRODUCTION: High-intensity focused ultrasound (HIFU) is an innovative noninvasive procedure for local ablation of different benign and malignant tumors. Preliminary data of animal studies suggest an ablation-associated immune response after HIFU that is induced by cell necrosis and release of intracellular components. The aim of this study is to evaluate if a HIFU-induced early sterile inflammatory reaction is initiated after ablation of uterine fibroids (UF) and pancreatic carcinoma (PaC) which might contribute to the therapeutic effect. MATERIAL AND METHODS: A hundred patients with PaC and 30 patients with UF underwent US-guided HIFU treatment. Serum markers of inflammation (leukocytes, CRP, IL-6) and LDH in both collectives as well as tumor markers CA 19-9, CEA and CYFRA in PaC patients were determined in sub-cohorts before and directly after HIFU (0, 2, 5 and 20 h post-ablation) as well as at 3, 6, 9 and 12 months follow-up. Peri-/post interventional imaging included contrast-enhanced MRI of both cohorts and an additional CT scan of PaC patients. RESULTS: An early post-ablation inflammatory response was observed in both groups with a significant increase of leukocytes, CRP and LDH within the first 20 h after HIFU. Interestingly, IL-6 was increased at 20 h after HIFU in PaC patients. A significant reduction of tumor volumes was observed during one year follow-up (p < .001) for both tumor entities demonstrating effective treatment outcome. CONCLUSION: Tumor ablation with HIFU induces an early sterile inflammation that might serve as a precondition for long-term tumor immunity and a sustainable therapeutic effect.


Assuntos
Neoplasias Abdominais , Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias Uterinas , Feminino , Alemanha , Humanos , Inflamação/diagnóstico por imagem , Laboratórios , Resultado do Tratamento
10.
Theranostics ; 11(15): 7570-7588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158867

RESUMO

Background: Glucose metabolism in the tumor-microenvironment is a fundamental hallmark for tumor growth and intervention therein remains an attractive option for anti-tumor therapy. Whether tumor-derived factors such as microRNAs (miRs) regulate glucose metabolism in stromal cells, especially in tumor-associated macrophages (TAMs), to hijack them for trophic support, remains elusive. Methods: Ago-RIP-Seq identified macrophage lactate dehydrogenase B (LDHB) as a target of tumor-derived miR-375 in both 2D/3D cocultures and in murine TAMs from a xenograft mouse model. The prognostic value was analyzed by ISH and multiplex IHC of breast cancer patient tissues. Functional consequences of the miR-375-LDHB axis in TAMs were investigated upon mimic/antagomir treatment by live metabolic flux assays, GC/MS, qPCR, Western blot, lentiviral knockdown and FACS. The therapeutic potential of a combinatorial miR-375-decoy/simvastatin treatment was validated by live cell imaging. Results: Macrophage LDHB decreased in murine and human breast carcinoma. LDHB downregulation increase aerobic glycolysis and lactagenesis in TAMs in response to tumor-derived miR-375. Lactagenesis reduced fatty acid synthesis but activated SREBP2, which enhanced cholesterol biosynthesis in macrophages. LDHB downregulation skewed TAMs to function as a lactate and sterol/oxysterol source for the proliferation of tumor cells. Restoring of LDHB expression potentiated inhibitory effects of simvastatin on tumor cell proliferation. Conclusion: Our findings identified a crucial role of LDHB in macrophages and established tumor-derived miR-375 as a novel regulator of macrophage metabolism in breast cancer, which might pave the way for strategies of combinatorial cancer cell/stroma cell interventions.


Assuntos
Neoplasias da Mama/metabolismo , L-Lactato Desidrogenase/metabolismo , Macrófagos/enzimologia , Neoplasias Mamárias Animais/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Feminino , Humanos , Isoenzimas/metabolismo , Células MCF-7 , Neoplasias Mamárias Animais/patologia
11.
J Lipid Res ; 62: 100078, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33891937

RESUMO

Cerebrotendinous xanthomatosis (CTX) is caused by autosomal recessive loss-of-function mutations in CYP27A1, a gene encoding cytochrome p450 oxidase essential for bile acid synthesis, resulting in altered bile acid and lipid metabolism. Here, we aimed to identify metabolic aberrations that drive ongoing neurodegeneration in some patients with CTX despite chenodeoxycholic acid (CDCA) supplementation, the standard treatment in CTX. Using chromatographic separation techniques coupled to mass spectrometry, we analyzed 26 sterol metabolites in serum and cerebrospinal fluid (CSF) of patients with CTX and in one CTX brain. Comparing samples of drug naive patients to patients treated with CDCA and healthy controls, we identified 7α,12α-dihydroxycholest-4-en-3-one as the most prominently elevated metabolite in serum and CSF of drug naive patients. CDCA treatment substantially reduced or even normalized levels of all metabolites increased in untreated patients with CTX. Independent of CDCA treatment, metabolites of the 27-hydroxylation pathway were nearly absent in all patients with CTX. 27-hydroxylated metabolites accounted for ∼45% of total free sterol content in CSF of healthy controls but <2% in patients with CTX. Metabolic changes in brain tissue corresponded well with findings in CSF. Interestingly, 7α,12α-dihydroxycholest-4-en-3-one and 5α-cholestanol did not exert toxicity in neuronal cell culture. In conclusion, we propose that increased 7α,12α-dihydroxycholest-4-en-3-one and lack of 27-hydroxycholesterol may be highly sensitive metabolic biomarkers of CTX. As CDCA cannot reliably prevent disease progression despite reduction of most accumulated metabolites, supplementation of 27-hydroxylated bile acid intermediates or replacement of CYP27A1 might be required to counter neurodegeneration in patients with progressive disease despite CDCA treatment.


Assuntos
Xantomatose Cerebrotendinosa
12.
Mar Drugs ; 19(4)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801706

RESUMO

We recently found that dietary supplementation with the seaweed Sargassum fusiforme, containing the preferential LXRß-agonist 24(S)-saringosterol, prevented memory decline and reduced amyloid-ß (Aß) deposition in an Alzheimer's disease (AD) mouse model without inducing hepatic steatosis. Here, we examined the effects of 24(S)-saringosterol as a food additive on cognition and neuropathology in AD mice. Six-month-old male APPswePS1ΔE9 mice and wildtype C57BL/6J littermates received 24(S)-saringosterol (0.5 mg/25 g body weight/day) (APPswePS1ΔE9 n = 20; C57BL/6J n = 19) or vehicle (APPswePS1ΔE9 n = 17; C57BL/6J n = 19) for 10 weeks. Cognition was assessed using object recognition and object location tasks. Sterols were analyzed by gas chromatography/mass spectrometry, Aß and inflammatory markers by immunohistochemistry, and gene expression by quantitative real-time PCR. Hepatic lipids were quantified after Oil-Red-O staining. Administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice without affecting the Aß plaque load. Moreover, 24(S)-saringosterol prevented the increase in the inflammatory marker Iba1 in the cortex of APPswePS1ΔE9 mice (p < 0.001). Furthermore, 24(S)-saringosterol did not affect the expression of lipid metabolism-related LXR-response genes in the hippocampus nor the hepatic neutral lipid content. Thus, administration of 24(S)-saringosterol prevented cognitive decline in APPswePS1ΔE9 mice independent of effects on Aß load and without adverse effects on liver fat content. The anti-inflammatory effects of 24(S)-saringosterol may contribute to the prevention of cognitive decline.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Cognição/efeitos dos fármacos , Nootrópicos/farmacologia , Estigmasterol/análogos & derivados , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Estigmasterol/farmacologia
13.
Cell Death Differ ; 28(4): 1301-1316, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33177619

RESUMO

Macrophages acquire anti-inflammatory and proresolving functions to facilitate resolution of inflammation and promote tissue repair. While alternatively activated macrophages (AAMs), also referred to as M2 macrophages, polarized by type 2 (Th2) cytokines IL-4 or IL-13 contribute to the suppression of inflammatory responses and play a pivotal role in wound healing, contemporaneous exposure to apoptotic cells (ACs) potentiates the expression of anti-inflammatory and tissue repair genes. Given that liver X receptors (LXRs), which coordinate sterol metabolism and immune cell function, play an essential role in the clearance of ACs, we investigated whether LXR activation following engulfment of ACs selectively potentiates the expression of Th2 cytokine-dependent genes in primary human AAMs. We show that AC uptake simultaneously upregulates LXR-dependent, but suppresses SREBP-2-dependent gene expression in macrophages, which are both prevented by inhibiting Niemann-Pick C1 (NPC1)-mediated sterol transport from lysosomes. Concurrently, macrophages accumulate sterol biosynthetic intermediates desmosterol, lathosterol, lanosterol, and dihydrolanosterol but not cholesterol-derived oxysterols. Using global transcriptome analysis, we identify anti-inflammatory and proresolving genes including interleukin-1 receptor antagonist (IL1RN) and arachidonate 15-lipoxygenase (ALOX15) whose expression are selectively potentiated in macrophages upon concomitant exposure to ACs or LXR agonist T0901317 (T09) and Th2 cytokines. We show priming macrophages via LXR activation enhances the cellular capacity to synthesize inflammation-suppressing specialized proresolving mediator (SPM) precursors 15-HETE and 17-HDHA as well as resolvin D5. Silencing LXRα and LXRß in macrophages attenuates the potentiation of ALOX15 expression by concomitant stimulation of ACs or T09 and IL-13. Collectively, we identify a previously unrecognized mechanism of regulation whereby LXR integrates AC uptake to selectively shape Th2-dependent gene expression in AAMs.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Colesterol/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Araquidonato 15-Lipoxigenase/genética , Citocinas/genética , Citocinas/metabolismo , Fluorocarbonos/farmacologia , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Metabolismo dos Lipídeos , Fagocitose , Ligação Proteica , RNA Interferente Pequeno/genética , Sulfonamidas/farmacologia
14.
Poult Sci ; 99(12): 6837-6847, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248599

RESUMO

Exposure to high ambient temperature has been shown to impair growth performance and to cause oxidative stress in broilers. This study investigated the hypothesis that supplementation with methionine (Met) as DL-Met (DLM) more than the National Research Council recommendations improves growth performance and alleviates oxidative stress in broilers exposed to high ambient temperature. One-day-old male Cobb-500 broilers (n = 68) were allotted to 4 groups and phase-fed 3 basal diets during days 1 to 10, 11 to 21, and 22 to 35. One group was kept under thermoneutral temperature conditions and received the basal diets with Met + cysteine (Cys) concentrations according to recommendations of NRC. The other 3 groups were kept in a room with an increased ambient temperature from week 3 to 5 and were fed either the basal diet or the basal diets supplemented with 2 levels of DLM in which Met + Cys concentrations exceeded NRC recommendations by around 20% (group DLM1) and 40% (group DLM2), respectively. As expected, the broilers exposed to high ambient temperature showed a lower feed intake, lower body weight gains, a higher feed:gain ratio, and biochemical indications of oxidative stress in comparison to broilers kept under thermoneutral temperature conditions. Supplementation of DLM did not improve the growth performance in broilers exposed to high ambient temperature. However, the broilers supplemented with DLM had increased concentrations of glutathione in liver and breast muscle (groups DLM1 and DLM2), increased concentrations of tocopherols in the liver (group DLM2), and reduced concentrations of 7α-hydroxycholesterol and 7-ketocholesterol in heat-processed thigh muscle (groups DLM1 and DLM2) in comparison to the control group exposed to high ambient temperature. Concentrations of thiobarbituric acid-reactive substances and vitamin C in plasma, liver, and muscle were not different between the 3 groups exposed to heat stress. Nevertheless, the study shows that supplementation of DLM in slight excess of the Met concentration required for maximum growth performance improved the antioxidant status in tissues and reduced the susceptibility of muscle toward oxidation in heat-stressed broilers.


Assuntos
Antioxidantes , Galinhas , Suplementos Nutricionais , Temperatura Alta , Metionina , Estresse Oxidativo , Ração Animal/análise , Animais , Antioxidantes/análise , Galinhas/metabolismo , Dieta/veterinária , Masculino , Metionina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Oxirredutases/metabolismo , Plasma/enzimologia
15.
Life Sci Alliance ; 3(6)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32354700

RESUMO

Presenilins (PS) are the catalytic components of γ-secretase complexes that mediate intramembrane proteolysis. Mutations in the PS genes are a major cause of familial early-onset Alzheimer disease and affect the cleavage of the amyloid precursor protein, thereby altering the production of the amyloid ß-peptide. However, multiple additional protein substrates have been identified, suggesting pleiotropic functions of γ-secretase. Here, we demonstrate that inhibition of γ-secretase causes dysregulation of cellular lipid homeostasis, including up-regulation of liver X receptors, and complex changes in the cellular lipid composition. Genetic and pharmacological inhibition of γsecretase leads to strong accumulation of cytoplasmic lipid droplets, associated with increased levels of acylglycerols, but lowered cholesteryl esters. Furthermore, accumulation of lipid droplets was augmented by increasing levels of amyloid precursor protein C-terminal fragments, indicating a critical involvement of this γ-secretase substrate. Together, these data provide a mechanism that functionally connects γ-secretase activity to cellular lipid metabolism. These effects were also observed in human astrocytic cells, indicating an important function of γ-secretase in cells critical for lipid homeostasis in the brain.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ésteres do Colesterol/metabolismo , Glicerídeos/metabolismo , Gotículas Lipídicas/metabolismo , Receptores X do Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Linhagem Celular Tumoral , Diaminas/farmacologia , Fibroblastos/metabolismo , Deleção de Genes , Homeostase/efeitos dos fármacos , Homeostase/genética , Humanos , Camundongos , Camundongos Knockout , Presenilinas/deficiência , Presenilinas/genética , Tiazóis/farmacologia , Transfecção , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
16.
J Pathol ; 251(4): 429-439, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32472585

RESUMO

Despite the increased awareness of differences in the inflammatory response between men and women, only limited research has focused on the biological factors underlying these sex differences. The cholesterol derivative 27-hydroxycholesterol (27HC) has been shown to have opposite inflammatory effects in independent experiments using mouse models of atherosclerosis and non-alcoholic steatohepatitis (NASH), pathologies characterized by cholesterol-induced inflammation. As the sex of mice in these in vivo models differed, we hypothesized that 27HC exerts opposite inflammatory effects in males compared to females. To explore whether the sex-opposed inflammatory effects of 27HC translated to humans, plasma 27HC levels were measured and correlated with hepatic inflammatory parameters in obese individuals. To investigate whether 27HC exerts sex-opposed effects on inflammation, we injected 27HC into female and male Niemann-Pick disease type C1 mice (Npc1nih ) that were used as an extreme model of cholesterol-induced inflammation. Finally, the involvement of estrogen signaling in this mechanism was studied in bone marrow-derived macrophages (BMDMs) that were treated with 27HC and 17ß-estradiol (E2). Plasma 27HC levels showed opposite correlations with hepatic inflammatory indicators between female and male obese individuals. Likewise, hepatic 27HC levels oppositely correlated between female and male Npc1nih mice. Twenty-seven hydroxycholesterol injections reduced hepatic inflammation in female Npc1nih mice in contrast to male Npc1nih mice, which showed increased hepatic inflammation after 27HC injections. Furthermore, 27HC administration also oppositely affected inflammation in female and male BMDMs cultured in E2-enriched medium. Remarkably, female BMDMs showed higher ERα expression compared to male BMDMs. Our findings identify that the sex-opposed inflammatory effects of 27HC are E2-dependent and are potentially related to differences in ERα expression between females and males. Hence, the individual's sex needs to be taken into account when 27HC is employed as a therapeutic tool as well as in macrophage estrogen research in general. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Aterosclerose/patologia , Estrogênios/metabolismo , Hidroxicolesteróis/farmacologia , Inflamação/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Transdução de Sinais/efeitos dos fármacos , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Fígado/metabolismo , Fígado/patologia , Macrófagos/patologia , Masculino , Camundongos , Fatores Sexuais
17.
J Lipid Res ; 61(4): 492-504, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31907205

RESUMO

Loss of pancreatic ß-cell mass and function as a result of sustained ER stress is a core step in the pathogenesis of diabetes mellitus type 2. The complex control of ß-cells and insulin production involves hedgehog (Hh) signaling pathways as well as cholesterol-mediated effects. In fact, data from studies in humans and animal models suggest that HDL protects against the development of diabetes through inhibition of ER stress and ß-cell apoptosis. We investigated the mechanism by which HDL inhibits ER stress and apoptosis induced by thapsigargin, a sarco/ER Ca2+-ATPase inhibitor, in ß-cells of a rat insulinoma cell line, INS1e. We further explored effects on the Hh signaling receptor Smoothened (SMO) with pharmacologic agonists and inhibitors. Interference with sterol synthesis or efflux enhanced ß-cell apoptosis and abrogated the anti-apoptotic activity of HDL. During ER stress, HDL facilitated the efflux of specific oxysterols, including 24-hydroxycholesterol (OHC). Supplementation of reconstituted HDL with 24-OHC enhanced and, in cells lacking ABCG1 or the 24-OHC synthesizing enzyme CYP46A1, restored the protective activity of HDL. Inhibition of SMO countered the beneficial effects of HDL and also LDL, and SMO agonists decreased ß-cell apoptosis in the absence of ABCG1 or CYP46A1. The translocation of the SMO-activated transcription factor glioma-associated oncogene GLI-1 was inhibited by ER stress but restored by both HDL and 24-OHC. In conclusion, the protective effect of HDL to counter ER stress and ß-cell death involves the transport, generation, and mobilization of oxysterols for activation of the Hh signaling receptor SMO.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Lipoproteínas HDL/farmacologia , Receptor Smoothened/metabolismo , Animais , Linhagem Celular , Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Homeostase/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/metabolismo
19.
J Steroid Biochem Mol Biol ; 190: 115-125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940596

RESUMO

Serum concentrations of lathosterol, the plant sterols campesterol and sitosterol and the cholesterol metabolite 5α-cholestanol are widely used as surrogate markers of cholesterol synthesis and absorption, respectively. Increasing numbers of laboratories utilize a broad spectrum of well-established and recently developed methods for the determination of cholesterol and non-cholesterol sterols (NCS). In order to evaluate the quality of these measurements and to identify possible sources of analytical errors our group initiated the first international survey for cholesterol and NCS. The cholesterol and NCS survey was structured as a two-part survey which took place in the years 2013 and 2014. The first survey part was designed as descriptive, providing information about the variation of reported results from different laboratories. A set of two lyophilized pooled sera (A and B) was sent to twenty laboratories specialized in chromatographic lipid analysis. The different sterols were quantified either by gas chromatography-flame ionization detection, gas chromatography- or liquid chromatography-mass selective detection. The participants were requested to determine cholesterol and NCS concentrations in the provided samples as part of their normal laboratory routine. The second part was designed as interventional survey. Twenty-two laboratories agreed to participate and received again two different lyophilized pooled sera (C and D). In contrast to the first international survey, each participant received standard stock solutions with defined concentrations of cholesterol and NCS. The participants were requested to use diluted calibration solutions from the provided standard stock solutions for quantification of cholesterol and NCS. In both surveys, each laboratory used its own internal standard (5α-cholestane, epicoprostanol or deuterium labelled sterols). Main outcome of the survey was, that unacceptably high interlaboratory variations for cholesterol and NCS concentrations are reported, even when the individual laboratories used the same calibration material. We discuss different sources of errors and recommend all laboratories analysing cholesterol and NCS to participate in regular quality control programs.


Assuntos
Colesterol/sangue , Fitosteróis/sangue , Colestanol/sangue , Colesterol/análogos & derivados , Cromatografia Gasosa/métodos , Cromatografia Líquida/métodos , Humanos , Sitosteroides/sangue , Inquéritos e Questionários
20.
mSphere ; 3(6)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404938

RESUMO

Monocytes from HIV-infected patients produce increased levels of inflammatory cytokines, which are associated with chronic immune activation and AIDS progression. Chronic immune activation is often not restored even in patients showing viral suppression under ART. Therefore, new therapeutic strategies to control inflammation and modulate immune activation are required. Hydroxypropyl-beta-cyclodextrin (HP-BCD) is a cholesterol-sequestering agent that has been reported to be safe for human use in numerous pharmaceutical applications and that has been shown to inactivate HIV in vitro and to control SIV infection in vivo Since cellular cholesterol content or metabolism has been related to altered cellular activation, we evaluated whether HP-BCD treatment could modulate monocyte response to inflammatory stimuli. Treatment of monocytes isolated from HIV-positive and HIV-negative donors with HP-BCD inhibited the expression of CD36 and TNF-α after LPS stimulation, independent of raft disruption. Accordingly, HP-BCD-treated cells showed significant reduction of TNF-α and IL-10 secretion, which was associated with lower mRNA expression. LPS-induced p38MAPK phosphorylation was dampened by HP-BCD treatment, indicating this pathway as a target for HP-BCD-mediated anti-inflammatory response. The expression of HLA-DR was also reduced in monocytes and dendritic cells treated with HP-BCD, which could hinder T cell activation by these cells. Our data suggest that, besides its well-known antiviral activity, HP-BCD could have an immunomodulatory effect, leading to decreased inflammatory responses mediated by antigen-presenting cells, which may impact HIV pathogenesis and AIDS progression.IMPORTANCE Chronic immune activation is a hallmark of HIV infection and is often not controlled even in patients under antiretroviral therapy. Indeed, chronic diseases with inflammatory pathogenesis are being reported as major causes of death for HIV-infected persons. Hydroxypropyl-beta cyclodextrin (HP-BCD) is a cholesterol-sequestering drug that inhibits HIV replication and infectivity in vitro and in vivo Recent studies have demonstrated the importance of cholesterol metabolism and content in different inflammatory conditions; therefore, we investigated the potential of HP-BCD as an immunomodulatory drug, regulating the activation of cells from HIV-infected patients. Treatment of monocytes with HP-BCD inhibited the expression and secretion of receptors and mediators that are usually enhanced in HIV patients. Furthermore, we investigated the molecular mechanisms associated with the immunomodulatory effect of HP-BCD. Our results indicate that, besides reducing viral replication, HP-BCD treatment may contribute to modulation of chronic immune activation associated with AIDS.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Anti-Inflamatórios/farmacologia , Imunossupressores/farmacologia , Monócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Adulto , Idoso , Antígenos CD36/análise , Células Cultivadas , Feminino , Infecções por HIV/patologia , Antígenos HLA-DR/análise , Humanos , Interleucina-10/análise , Lipopolissacarídeos/imunologia , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/análise , Proteínas Quinases p38 Ativadas por Mitógeno/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA