Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioengineering (Basel) ; 10(7)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508899

RESUMO

CFR-PEEK is gaining popularity in spinal oncological applications due to its reduction of imaging artifacts and radiation scattering compared with titanium, which allows for better oncological follow-up and efficacy of radiotherapy. We evaluated the use of these materials for the treatment of lumbar degenerative diseases (DDs) and considered the biomechanical potential of the carbon fiber in relation to its modulus of elasticity being similar to that of bone. Twenty-eight patients with DDs were treated using CRF-PEEK instrumentation. The clinical and radiographic outcomes were collected at a 12-month FU. Spinal fusion was evaluated in the CT scans using Brantigan scores, while the clinical outcomes were evaluated using VAS, SF-12, and EQ-5D scores. Out of the patients evaluated at the 12-month FU, 89% showed complete or almost certain fusion (Brantigan score D and E) and presented a significant improvement in all clinical parameters; the patients also presented VAS scores ranging from 6.81 ± 2.01 to 0.85 ± 1.32, EQ-5D scores ranging from 53.4 ± 19.3 to 85.0 ± 13.7, SF-12 physical component scores (PCSs) ranging from 29.35 ± 7.04 to 51.36 ± 9.75, and SF-12 mental component scores (MCSs) ranging from 39.89 ± 11.70 to 53.24 ± 9.24. No mechanical complications related to the implant were detected, and the patients reported a better tolerance of the instrumentation compared with titanium. No other series of patients affected by DD that was stabilized using carbon fiber implants have been reported in the literature. The results of this pilot study indicate the efficacy and safety of these implants and support their use also for spinal degenerative diseases.

2.
J Neurointerv Surg ; 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36593116

RESUMO

BACKGROUND: There is limited literature regarding the re-fracture of a previously augmented vertebral compression fracture (VCF). These re-fractures may present as an asymptomatic remodeling of the vertebral body around the cement cast while in other cases they involve the middle column, at the transition zone between the cement-augmented and non-augmented vertebral body. In the latter, a posterior wall retropulsion is possible and, if left untreated, might progress to vertebral body splitting, central canal stenosis, and kyphotic deformity. There is no consensus regarding the best treatment for these re-fractures. There are cases in which a repeated augmentation relieves the pain, but this is considered an undertreatment in cases with middle column involvement, posterior wall retropulsion, and kyphosis. METHODS: We report four cases of re-fracture with middle column collapse of a previously augmented VCF, treated with the stent-screw assisted internal fixation (SAIF) technique. A modified more postero-medial deployment of the anterior metallic implants was applied, to target the middle column fracture. This modified SAIF allowed the reduction and stabilization of the middle column collapse as well as the partial correction of the posterior wall retropulsion and kyphosis. RESULTS: Complete relief of back pain with stable clinical and radiographic findings at follow-up was obtained in all cases. CONCLUSIONS: In selected cases, the middle column SAIF technique is safe and effective for the treatment of the re-fracture with middle column collapse of a previously cement-augmented VCF. This technique requires precision in trocar placement and could represent a useful addition to the technical armamentarium for VCF treatment.

3.
Spine Deform ; 11(1): 49-58, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083462

RESUMO

STUDY DESIGN: Assessment of sagittal lordosis distribution on mechanical proximal junctional failure-related risks through computer-based biomechanical models. OBJECTIVE: To biomechanically assess how lordosis distribution influences radiographical and biomechanical indices related to Proximal Junctional Failure (PJF). The "optimal" patient-specific targets to restore the sagittal balance in posterior spinal fusion are still not known. Among these, the effect of the lumbar lordosis correction strategy on complications such as PJF remain uncertain. METHODS: In this computational biomechanical study, five adult spinal deformity patients who underwent posterior spinal fixation were retrospectively reviewed. Their surgery, first erect posture and flexion movement were simulated with a patient-specific multibody model. Three pedicle subtraction osteotomy (PSO) levels (L3, L4, and L5) were simulated, with consistent global lordosis for a given patient and pelvic tilt adjusted accordingly to the actual surgery. Computed loads on the anterior spine and instrumentation were analyzed and compared using Kruskal-Wallis statistical tests and Spearman correlations. RESULTS: In these models, no significant correlations were found between the lordosis distribution index (LDI), PSO level and biomechanical PJF-related indices. However, increasing the sagittal vertical axis (SVA) and thoracolumbar junction angle (TLJ) and decreasing the sacral slope (SS) increased the bending moment sustained by the rods at the proximal instrumented level (r = 0.52, 0.57, - 0.56, respectively, p < 0.05). There was a negative correlation between SS and the bending moment held by the adjacent proximal segment (r = - 0.71, p < 0.05). CONCLUSION: Based on these biomechanical simulations, there was no correlation between the lordosis distribution and PJF-associated biomechanical factors. However, increasing SS and flattening the TLJ, as postural adjustment strategies required by a more distal PSO, did decrease such PJF-related factors. Sagittal restoration and PJF risks remain multifactorial, and the use of patient-specific biomechanical models may help to better understand the complex interrelated mechanisms.


Assuntos
Cifose , Lordose , Adulto , Humanos , Lordose/diagnóstico por imagem , Lordose/cirurgia , Estudos Retrospectivos , Cifose/cirurgia , Sacro , Reoperação
4.
Sci Rep ; 11(1): 3595, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574504

RESUMO

Pedicle subtraction osteotomy (PSO) is an invasive surgical technique allowing the restoration of a well-balanced sagittal profile, however, the risks of pseudarthrosis and instrumentation breakage are still high. Literature studied primary stability and posterior instrumentation loads, neglecting the load shared by the anterior column, which is fundamental to promote fusion early after surgery. The study aimed at quantifying the load-sharing occurring after PSO procedure across the ventral spinal structures and the posterior instrumentation, as affected by simple bilateral fixation alone, with interbody cages adjacent to PSO level and supplementary accessory rods. Lumbar spine segments were loaded in vitro under flexion-extension, lateral bending, and torsion using an established spine tester. Digital image correlation (DIC) and strain-gauge (SG) analyses measured, respectively, the full-field strain distribution on the ventral surface of the spine and the local strain on posterior primary rods. Ventral strains considerably decreased following PSO and instrumentation, confirming the effectiveness of posterior load-sharing. Supplemental accessory rods considerably reduced the posterior rod strains only with interbody cages, but the ventral strains were unaffected: this indicates that the load transfer across the osteotomy could be promoted, thus explaining the higher fusion rate with decreased rod fracture risk reported in clinical literature.


Assuntos
Lordose/cirurgia , Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Osteotomia/métodos , Fenômenos Biomecânicos , Biofísica , Feminino , Humanos , Lordose/patologia , Vértebras Lombares/patologia , Região Lombossacral/patologia , Masculino , Pessoa de Meia-Idade , Parafusos Pediculares , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral
5.
J Neurointerv Surg ; 13(1): 63-68, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32938744

RESUMO

BACKGROUND: The treatment of severe osteoporotic vertebral compression fractures (VCFs) with middle-column (MC) involvement, high fragmentation, large cleft and/or pedicular fracture is challenging. Minimally invasive 'stent-screw-assisted internal fixation' (SAIF) can reduce the fracture, reconstruct the vertebral body (VB) and fix it to the posterior elements. OBJECTIVE: To assess feasibility, safety, technical and clinical outcome of the SAIF technique in patients with severe osteoporotic VCFs. METHODS: 80 treated vertebrae were analyzed retrospectively. Severe VCFs were characterized by advanced collapse (Genant grade 3), a high degree of osseous fragmentation (McCormack grade 2 and 3), burst morphology with MC injury, pediculo-somatic junction fracture, and/or large osteonecrotic cleft. VB reconstruction was evaluated on postprocedure radiographs and CT scans by two independent raters. Clinical and radiological follow-ups were performed at 1 and 6 months. RESULTS: SAIF was performed at 28 thoracic and 52 lumbar levels in 73 patients. One transient neurological complication occurred. VB reconstruction was satisfactory in 98.8% of levels (inter-rater reliability 96%, κ=1). Follow-up at 1 month was available for 78/80 levels and at 6 months or later (range 6-24, mean 7.9 months) for 73/80 levels. Significant improvement in the Visual Analog Scale score was noted at 1 and 6 months after treatment (p<0.05). Patients reported global clinical benefit during follow-up (Patient's Global Impression of Change Scale 5.6±0.9 at 1 month and 6.1±0.9 at 6 months). Fourteen new painful VCFs occurred at different levels in 11 patients during follow-up, treated with vertebral augmentation or SAIF. Target-level stability was maintained in all cases. CONCLUSIONS: SAIF is a minimally invasive, safe, and effective treatment for patients with severe osteoporotic VCFs with MC involvement.


Assuntos
Parafusos Ósseos , Fixação Interna de Fraturas/métodos , Fraturas por Compressão/cirurgia , Fraturas por Osteoporose/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Fraturas da Coluna Vertebral/cirurgia , Stents , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Fixação Interna de Fraturas/instrumentação , Fraturas por Compressão/diagnóstico por imagem , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Masculino , Pessoa de Meia-Idade , Fraturas por Osteoporose/diagnóstico por imagem , Procedimentos de Cirurgia Plástica/instrumentação , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem , Vértebras Torácicas/cirurgia , Resultado do Tratamento
6.
Eur Spine J ; 29(1): 36-44, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31414289

RESUMO

PURPOSE: To investigate the biomechanical effects of anterior column realignment (ACR) and pedicle subtraction osteotomy (PSO) on local lordosis correction, primary stability and rod strains. METHODS: Seven cadaveric spine segments (T12-S1) underwent ACR at L1-L2. A stand-alone hyperlordotic cage was initially tested and then supplemented with posterior bilateral fixation. The same specimens already underwent a PSO at L4 stabilized by two rods, a supplemental central rod (three rods) and accessory rods (four rods) with and without adjacent interbody cages (La Barbera in Eur Spine J 27(9):2357-2366, 2018). In vitro flexibility tests were performed under pure moments in flexion/extension (FE), lateral bending (LB) and axial rotation (AR) to determine the range of motion (RoM), while measuring the rod strains with strain gauge rosettes. RESULTS: Local lordosis correction with ACR (24.7° ± 3.7°) and PSO (25.1° ± 3.9°) was similar. Bilateral fixation significantly reduced the RoM (FE: 31%, LB: 2%, AR: 18%), providing a stability consistent with PSO constructs (p > 0.05); however, it demonstrates significantly higher rod strains compared to PSO constructs with lateral accessory rods and interbody cages in FE and AR (p < 0.05), while being comparable in FE or slightly higher in AR compared to PSO constructs with two and three rods. CONCLUSION: Bilateral posterior fixation is highly recommended following ACR to provide adequate primary stability. However, primary rod strains in ACR were found comparable or higher than weak PSO construct associated with frequent rod failure; therefore, caution is recommended. These slides can be retrieved under Electronic Supplementary Material.


Assuntos
Osteotomia , Curvaturas da Coluna Vertebral/cirurgia , Coluna Vertebral/cirurgia , Fenômenos Biomecânicos , Humanos , Osteotomia/instrumentação , Osteotomia/métodos , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral
7.
J Neurosurg Spine ; : 1-12, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31860813

RESUMO

OBJECTIVE: Severe lytic cancerous lesions of the spine are associated with significant morbidity and treatment challenges. Stabilization and restoration of the axial load capability of the vertebral body (VB) are important to prevent or arrest vertebral collapse. Percutaneous stent screw-assisted internal fixation (SAIF), which anchors a VB stent/cement complex with pedicular screws to the posterior vertebral elements, is a minimally invasive, image-guided, 360° internal fixation technique that can be utilized in this patient cohort. The purpose of this study was to assess the feasibility, safety, and stabilization efficacy of VB reconstruction via the SAIF technique in a cohort of patients with extensive lytic vertebral lesions, who were considered to have an unstable or potentially unstable spine according to the Spinal Instability Neoplastic Score (SINS). METHODS: This study was a retrospective assessment of a prospectively maintained database of a consecutive series of patients with neoplastic extensive extracompartmental osteolysis (Tomita type 4-6) of the VB treated with the SAIF technique. VB reconstruction was assessed on postprocedure plain radiographs and CT by two independent raters. Technical and clinical complications were recorded. Clinical and imaging follow-ups were assessed. RESULTS: Thirty-five patients with extensive osteolytic metastatic lesions of the VB underwent 36 SAIF procedures. SAIF was performed as a stand-alone procedure in 31/36 cases and was associated with posterior surgical fixation in 5/36 (4/5 with decompressive laminectomy). In 1 case an epidural cement leak required surgical decompression. VB reconstruction was categorized as satisfactory (excellent or good rating) by the two raters in 34/36 cases (94.5%) with an interrater reliability of 94.4% (Cohen's kappa of 0.8). Follow-up, ranging from 1 to 30 months, was available for 30/36 levels. Long-term follow-up (6-30 months, mean 11.5 months) was available for 16/36 levels. Stability during follow-up was noted in 29/30 cases. CONCLUSIONS: SAIF provides 360° nonfusion internal fixation that stabilizes the VB in patients with extensive lytic lesions that would otherwise be challenging to treat.

8.
Artigo em Inglês | MEDLINE | ID: mdl-31709250

RESUMO

Vertebral compression fractures are one of the most relevant clinical consequences caused by osteoporosis: one of the most common treatment for such fractures is vertebral augmentation through minimally invasive approaches (vertebroplasty or balloon-kyphoplasty). Unfortunately, these techniques still present drawbacks, such as re-fractures of the treated vertebral body with subsidence of the non-augmented portions or re-fracture of the non-augmented middle column at the junction with the augmented anterior column. A novel minimally-invasive augmentation technique, called Stent-Screw Assisted Internal Fixation, has been recently proposed for the treatment of severe osteoporotic and neoplastic fractures: this technique uses two vertebral body stents and percutaneous cannulated and fenestrated pedicular screws, through which cement is injected inside the expanded stents to achieve optimal stents' and vertebral body's filling. The role of the pedicle screws is to anchor the stents-cement complex to the posterior column, acting as a bridge across the middle column and preserving its integrity from possible collapse. In order to evaluate the potential of the new technique in restoring the load bearing capacity of the anterior and middle spinal columns and in reducing bone strains, a Finite Element model of an osteoporotic lumbar spine has been developed. Both standard vertebroplasty and Stent-Screw Assisted Internal Fixation have been simulated: simulations have been run taking into account everyday activities (standing and flexion) and comparison between the two techniques, in terms of strain distribution on vertebral endplates and posterior and anterior wall, was performed. Results show that Stent-Screw Assisted Internal Fixation significantly decrease the strain distribution on the superior EP and the cortical wall compared to vertebroplasty, possibly reducing the re-fracture risk of the middle-column at the treated level.

9.
World Neurosurg ; 128: e370-e377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31029814

RESUMO

OBJECTIVE: A new stent-screw-assisted internal fixation (SAIF) minimally invasive cement-augmentation technique has been introduced to treat patients with extreme osteolytic lesions of the vertebral body. The aim of the current finite element study, employing a spine model with an extreme osteolytic defect, was to assess the effect of the SAIF technique in reducing strains in the vertebral body in comparison with a standard surgical short posterior fixation. METHODS: Different finite element models of a L1-S1 spine were developed, representing an intact condition (reference configuration), an extreme osteolysis condition, and its treatment, respectively with stand-alone SAIF, SAIF and posterior fixation, and with stand-alone posterior fixation. Each model was loaded to reproduce standing and upper body bending. Principal strains were calculated on the superior endplate, anterior and posterior cortical walls. A paired Wilcoxon test with a 0.05 significance level was performed to statistically analyze the results. RESULTS: Median strains on the bony structures increased in the osteolysis model compared with the intact model, and the SAIF technique was effective in reducing such strains under both standing and flexion conditions. Additional posterior fixation, combined with the SAIF technique, produced minimal further reduction of the median strains on the bony structures. Stand-alone posterior fixation only shielded the osteolytic vertebra avoiding excessive displacements but failed in restoring the axial stiffness to values typical of the intact vertebra. CONCLUSIONS: The new SAIF technique resulted effective in restoring the load-bearing capacity of the extensively osteolytic vertebra; additional posterior fixation provided only further minor advantages.


Assuntos
Cimentos Ósseos/uso terapêutico , Parafusos Ósseos , Fixação de Fratura/métodos , Osteólise/cirurgia , Fraturas da Coluna Vertebral/cirurgia , Neoplasias da Coluna Vertebral/secundário , Neoplasias da Coluna Vertebral/cirurgia , Stents , Fenômenos Biomecânicos , Análise de Elementos Finitos , Humanos , Vértebras Lombares , Osteólise/etiologia , Fraturas da Coluna Vertebral/etiologia , Neoplasias da Coluna Vertebral/complicações , Suporte de Carga
10.
J Neurointerv Surg ; 11(3): 313-318, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30297540

RESUMO

BACKGROUND: Extensive lytic lesions of the vertebral body (VB) increase risk of fracture and instability and require stabilization of the anterior column. Vertebral augmentation is an accepted treatment option, but when osteolysis has extensively destroyed the VB cortical boundaries (a condition herein defined as 'extreme osteolysis'), the risk of cement leakage and/or insufficient filling is high. Vertebral body stents (VBSs) might allow partial restoration of VB height, cement containment, and reinforcement, but their use in extreme osteolysis has not been investigated. OBJECTIVE: To assess retrospectively the feasibility and safety of VBS augmentation in patients with 'extreme osteolysis' of the VB. METHODS: We retrospectively analyzed 41 treated vertebrae (from T1 to L5). VB reconstruction was assessed on postprocedure CT images and rated on a qualitative 4-point scale (poor-fair-good-excellent). Clinical and radiological follow-up was performed at 1 month and thereafter at intervals in accordance with oncological protocols. RESULTS: VBS augmentation was performed at 12 lumbar and 29 thoracic levels, with bilateral VBS in 23/41. VB reconstruction was judged satisfactory (good or excellent) in 37/41 (90%) of levels. Bilateral VBS received higher scores than unilateral (p=0.057, Pearson's X2). We observed no periprocedural complications. Cement leaks (epidural or foraminal) occurred at 5/41 levels (12.2%) without clinical consequences. Follow-up data were available for 27/29 patients, extending beyond 6 months for 20 patients (7-28 months, mean 15.3 months). VBS implant stability was observed in 40/41 cases (97.5%). CONCLUSIONS: Our results support the use of VBS as a minimally invasive, safe and effective option for reconstructing the anterior column in prominent VB osteolysis.


Assuntos
Vértebras Lombares/cirurgia , Osteólise/cirurgia , Procedimentos de Cirurgia Plástica/métodos , Neoplasias da Coluna Vertebral/cirurgia , Stents , Vértebras Torácicas/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cimentos Ósseos , Feminino , Humanos , Vértebras Lombares/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Osteólise/diagnóstico por imagem , Estudos Retrospectivos , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/prevenção & controle , Neoplasias da Coluna Vertebral/diagnóstico por imagem , Vértebras Torácicas/diagnóstico por imagem , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA