Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 31: 100617, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39224688

RESUMO

Background and purpose: Radiotherapy plans with excessive complexity exhibit higher uncertainties and worse patient-specific quality assurance (PSQA) results, while the workload of measurement-based PSQA can impact the efficiency of the radiotherapy workflow. Machine Learning (ML) and Lean Six Sigma, a process optimization method, were implemented to adopt a targeted PSQA approach, aiming to reduce workload, risk of failures, and monitor complexity. Materials and methods: Lean Six Sigma was applied using DMAIC (define, measure, analyze, improve, and control) steps. Ten complexity metrics were computed for 69,811 volumetric modulated arc therapy (VMAT) arcs from 28,612 plans delivered in our Institute (2013-2021). Outlier complexities were defined as >95th-percentile of the historical distributions, stratified by treatment. An ML model was trained to predict the gamma passing rate (GPR-3 %/1mm) of an arc given its complexity. A decision support system was developed to monitor the complexity and expected GPR. Plans at risk of PSQA failure, either extremely complex or with average GPR <90 %, were identified. The tool's impact was assessed after nine months of clinical use. Results: Among 1722 VMAT plans monitored prospectively, 29 (1.7 %) were found at risk of failure. Planners reacted by performing PSQA measurement and re-optimizing the plan. Occurrences of outlier complexities remained stable within 5 %. The expected GPR increased from a median of 97.4 % to 98.2 % (Mann-Whitney p < 0.05) due to plan re-optimization. Conclusions: ML and Lean Six Sigma have been implemented in clinical practice enabling a targeted measurement-based PSQA approach for plans at risk of failure to improve overall quality and patient safety.

2.
Diseases ; 12(7)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39057124

RESUMO

Few data are available on the role of SBRT re-irradiation for isolated recurrences. We designed a prospective phase I study to evaluate the maximum tolerated dose (MTD) of SBRT for thoracic re-irradiation, for peripheral lung lesions. RT was delivered with a dose escalation design from 30 Gy in five fractions up to 50 Gy in five fractions. The primary end point was the definition of the maximum tolerated dose (MTD) of SBRT for thoracic re-irradiation. The dose-limiting toxicity was pneumonia ≥G3. Fifteen patients were enrolled. No cases of pneumonia ≥G3 occurred in any of our cohorts. Only one patient developed pneumonia G1 during treatment. Three patients developed acute toxicities that included dyspnea G1, cardiac failure G3, and chest wall pain. One patient developed G3 late toxicity with acute coronary syndrome. After a median follow-up of 21 months (range 3.6-29.1 months), six patients (40%) had a local relapse. Distant relapse occurred in five patients (33.3%). At the last follow-up, six patients died, all but two due to progressive disease. SBRT dose escalation for thoracic re-irradiation is an effective and well-tolerated option for patients with inoperable lung lesions after a first thoracic RT with acceptable acute and late toxicities.

3.
Curr Oncol ; 30(7): 7031-7042, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37504370

RESUMO

BACKGROUND: Hypo-fractionation can be an effective strategy to lower costs and save time, increasing patient access to advanced radiation therapy. To demonstrate this potential in practice within the context of temporal evolution, a twenty-year analysis of a representative radiation therapy facility from 2003 to 2022 was conducted. This analysis utilized comprehensive data to quantitatively evaluate the connections between advanced clinical protocols and technological improvements. The findings provide valuable insights to the management team, helping them ensure the delivery of high-quality treatments in a sustainable manner. METHODS: Several parameters related to treatment technique, patient positioning, dose prescription, fractionation, equipment technology content, machine workload and throughput, therapy times and patients access counts were extracted from departmental database and analyzed on a yearly basis by means of linear regression. RESULTS: Patients increased by 121 ± 6 new per year (NPY). Since 2010, the incidence of hypo-fractionation protocols grew thanks to increasing Linac technology. In seven years, both the average number of fractions and daily machine workload decreased by -0.84 ± 0.12 fractions/year and -1.61 ± 0.35 patients/year, respectively. The implementation of advanced dose delivery techniques, image guidance and high dose rate beams for high fraction doses, currently systematically used, has increased the complexity and reduced daily treatment throughput since 2010 from 40 to 32 patients per 8 h work shift (WS8). Thanks to hypo-fractionation, such an efficiency drop did not affect NPY, estimating 693 ± 28 NPY/WS8, regardless of the evaluation time. Each newly installed machine was shown to add 540 NPY, while absorbing 0.78 ± 0.04 WS8. The COVID-19 pandemic brought an overall reduction of 3.7% of patients and a reduction of 0.8 fractions/patient, to mitigate patient crowding in the department. CONCLUSIONS: The evolution of therapy protocols towards hypo-fractionation was supported by the use of proper technology. The characteristics of this process were quantified considering time progression and organizational aspects. This strategy optimized resources while enabling broader access to advanced radiation therapy. To truly value the benefit of hypo-fractionation, a reimbursement policy should focus on the patient rather than individual treatment fractionation.


Assuntos
COVID-19 , Radioterapia (Especialidade) , Humanos , Pandemias , Radioterapia (Especialidade)/métodos , Fracionamento da Dose de Radiação , Protocolos Clínicos
4.
Eur Urol Open Sci ; 27: 19-28, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34337513

RESUMO

CONTEXT: The optimal management of oligometastatic prostate cancer (PCa) is still debated. OBJECTIVE: The purpose of the present systematic review and meta-analysis is to collect the available evidence to date to better define the role of stereotactic body radiotherapy (SBRT) in selected patients with oligorecurrent PCa. EVIDENCE ACQUISITION: Study methodology complied with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA). All prospective studies including PCa patients with nodal and/or bone oligometastases (one to five lesions) were considered eligible. Heterogeneity between study-specific estimates was tested using chi-square statistics and measured with the I2 index. A pooled estimate was obtained by fitting both fixed-effect and DerSimonian and Laird random-effect model. EVIDENCE SYNTHESIS: Overall, six works (two randomized and the remainder observational) published between 2013 and 2020 were considered eligible. Globally, data from 445 patients were incorporated, of whom 396 were treated with SBRT (329 in observational studies and the remaining 67 in randomized ones). Regarding local progression-free survival (PFS), five studies reported values close to 100%, while one reported a value of 80% in the observation arm. The benefit in terms of biochemical PFS brought by SBRT was evident in all considered studies. Such a difference in cumulative probabilities between the intervention arm and the comparator arm is maintained even 24 mo after the baseline. All studies but one considered toxicity among the endpoints of interest. Most events were classified as either G1 or G2, and the only G ≥ 3 adverse event was reported in one trial. CONCLUSIONS: SBRT is highly cost effective, safe, and with an almost inexistent toxicity risk that makes it the perfect candidate for the optimal management of PCa oligometastatic patients. However, more solid data and a higher level of evidence are needed to affirm its role in the management of these patients. PATIENT SUMMARY: In this work, we reviewed available evidence on the use of stereotactic body radiotherapy in treating oligometastatic prostate cancer patients. We found good evidence that radiotherapy brings important benefits in overall treatment efficacy without major side effects.

5.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208918

RESUMO

In recent years, a growing interest has been directed towards oligometastatic prostate cancer (OMPC), as patients with three to five metastatic lesions have shown a significantly better survival as compared with those harboring a higher number of lesions. The efficacy of local ablative treatments directed on metastatic lesions (metastases-directed treatments) was extensively investigated, with the aim of preventing further disease progression and delaying the start of systemic androgen deprivation therapies. Definitive diagnosis of prostate cancer is traditionally based on histopathological analysis. Nevertheless, a bioptic sample-static in nature-inevitably fails to reflect the dynamics of the tumor and its biological response due to the dynamic selective pressure of cancer therapies, which can profoundly influence spatio-temporal heterogeneity. Furthermore, even with new imaging technologies allowing an increasingly early detection, the diagnosis of oligometastasis is currently based exclusively on radiological investigations. Given these premises, the development of minimally-invasive liquid biopsies was recently promoted and implemented as predictive biomarkers both for clinical decision-making at pre-treatment (baseline assessment) and for monitoring treatment response during the clinical course of the disease. Through liquid biopsy, different biomarkers, commonly extracted from blood, urine or saliva, can be characterized and implemented in clinical routine to select targeted therapies and assess treatment response. Moreover, this approach has the potential to act as a tissue substitute and to accelerate the identification of novel and consistent predictive analytes cost-efficiently. However, the utility of tumor profiling is currently limited in OMPC due to the lack of clinically validated predictive biomarkers. In this scenario, different ongoing trials, such as the RADIOSA trial, might provide additional insights into the biology of the oligometastatic state and on the identification of novel biomarkers for the outlining of true oligometastatic patients, paving the way towards a wider ideal approach of personalized medicine. The aim of the present narrative review is to report the current state of the art on the solidity of liquid biopsy-related analytes such as CTCs, cfDNA, miRNA and epi-miRNA, and to provide a benchmark for their further clinical implementation. Arguably, this kind of molecular profiling could refine current developments in the era of precision oncology and lead to more refined therapeutic strategies in this subset of oligometastatic patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA