Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 26(6): 386-98, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25869226

RESUMO

We have generated a xenogeneic vaccine against human carcinoembryonic antigen (hCEACAM-5 or commonly hCEA) using as immunogen rhesus CEA (rhCEA). RhCEA cDNA was codon-usage optimized (rhCEAopt) and delivered by sequential DNA electro-gene-transfer (DNA-EGT) and adenoviral (Ad) vector. RhCEAopt was capable to break tolerance to CEA in hCEA transgenic mice and immune responses were detected against epitopes distributed over the entire length of the protein. Xenovaccination with rhCEA resulted in the activation of CD4+ T-cell responses in addition to self-reactive CD8+ T-cells, the development of high-titer antibodies against hCEA, and significant antitumor effects upon challenge with hCEA+ tumor cells. The superior activity of rhCEAopt compared with hCEAopt was confirmed in hCEA/HHD double-transgenic mice, where potent CD8+ T-cell responses against specific human HLA A*0201 hCEA epitopes were detected. Our data show that xenogeneic gene-based vaccination with rhCEA is a viable approach to break tolerance against CEA, thus suggesting further development in the clinical setting.


Assuntos
Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/farmacologia , Antígeno Carcinoembrionário/imunologia , Antígeno HLA-A2/genética , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
2.
Oncoimmunology ; 3(1): e27529, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790791

RESUMO

Genetic vaccines are emerging as a powerful modality to induce T-cell responses to target tumor associated antigens (TAA). Viral or plasmid DNA or RNA vectors harbor an expression cassette encoding the antigen of choice delivered in vivo by vaccination. In this context, immunizations with minigenes containing selected, highly antigenic, T-cell epitopes of TAAs may have several advantages relative to full-length proteins. The objective of this study was to identify an optimal scaffold for minigene construction. We generated a number of minigenes containing epitopes from the carcinoembryonic antigen (CEA) model TAA and utilized muscle DNA electro-gene-transfer (DNA-EGT) to vaccinate HLA-A*0201 (HHD) and CEA/HHD double transgenic mice. The components utilized to construct the minigenes included CD8+ T cell epitopes and (or) anchor modified analogs that were selected on the basis of their predicted binding to HLA-*A0201, their uniqueness in the human proteome, and the likelihood of cancer cell natural processing and presentation via MHC-I. Other candidate components comparatively tested included: helper CD4+ T-cell epitopes, flanking regions for optimal epitope processing (including both proteasome-dependent and furin-dependent polypeptide processing mechanisms), and immunoenhancing moieties. Through a series of comparative studies and iterations we have identified an optimal minigene scaffold comprising the following elements: human tissue plasminogen activator (TPA) signal peptide, T-cell epitopes connected by furin sensitive linkers, and the E. Coli enterotoxin B subunit. The selected epitope modified minigenes (EMM) delivered by DNA-EGT were able to break immune tolerance in CEA/HHD mice and induce a strong immune response against all epitopes tested, independently of their relative positions within the scaffold. Furthermore, the optimized EMMs delivered via DNA-EGT were more immunogenic and exerted more powerful antitumor effects in a B16-CEA/HHD metastatic melanoma model than a DNA vector encoding the full-length protein or a mixture of the same peptides injected subcutaneously. Our data may shed light on the optimal design of a universal vehicle for epitope-targeted, genetic cancer vaccines.

3.
Hum Gene Ther ; 25(2): 121-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24195644

RESUMO

Several cancer vaccine efforts have been directed to simultaneously cotarget multiple tumor antigens, with the intent to achieve broader immune responses and more effective control of cancer growth. Genetic cancer vaccines based on in vivo muscle electro-gene-transfer of plasmid DNA (DNA-EGT) and adenoviral vectors represent promising modalities to elicit powerful immune responses against tumor-associated antigens (TAAs) such as carcinoembryonic antigen (CEA) and human epidermal growth factor receptor-2 (HER2)/neu. Combinations of these modalities of immunization (heterologous prime-boost) can induce superior immune reactions as compared with single-modality vaccines. We have generated a dual component-dual target genetic cancer vaccine consisting of a DNA moiety containing equal amounts of two plasmids, one encoding the extracellular and transmembrane domains of HER2 (ECD.TM) and the other encoding CEA fused to the B subunit of Escherichia coli heat-labile toxin (LTB), and of an adenoviral subtype 6 dicistronic vector carrying the same two tumor antigens gene constructs. The CEA/HER2 vaccine was tested in two different CEA/HER2 double-transgenic mouse models and in NOD/scid-DR1 mice engrafted with the human immune system. The immune response was measured by enzyme-linked immunospot assay, flow cytometry, and ELISA. The CEA/HER2 vaccine was able to break immune tolerance against both antigens. Induction of a T cell and antibody immune response was detected in immune-tolerant mice. Most importantly, the vaccine was able to slow the growth of HER2/neu⁺ and CEA⁺ tumors. A significant T cell response was measured in NOD/scid-DR1 mice engrafted with human cord blood cells. In conclusion, the CEA/HER2 genetic vaccine was immunogenic and able to confer significant therapeutic effects. These data warrant the evaluation of this vaccination strategy in human clinical trials.


Assuntos
Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/imunologia , Receptor ErbB-2/imunologia , Adenoviridae/genética , Animais , Vacinas Anticâncer/genética , Antígeno Carcinoembrionário/genética , Modelos Animais de Doenças , Feminino , Ordem dos Genes , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/mortalidade , Neoplasias/terapia , Ratos , Receptor ErbB-2/genética , Vacinas de DNA/genética , Vacinas de DNA/imunologia
4.
J Transl Med ; 11: 62, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23497415

RESUMO

BACKGROUND: DNA electroporation has been demonstrated in preclinical models to be a promising strategy to improve cancer immunity, especially when combined with other genetic vaccines in heterologous prime-boost protocols. We report the results of 2 multicenter phase 1 trials involving adult cancer patients (n=33) with stage II-IV disease. METHODS: Patients were vaccinated with V930 alone, a DNA vaccine containing equal amounts of plasmids expressing the extracellular and trans-membrane domains of human HER2, and a plasmid expressing CEA fused to the B subunit of Escherichia coli heat labile toxin (Study 1), or a heterologous prime-boost vaccination approach with V930 followed by V932, a dicistronic adenovirus subtype-6 viral vector vaccine coding for the same antigens (Study 2). RESULTS: The use of the V930 vaccination with electroporation alone or in combination with V932 was well-tolerated without any serious adverse events. In both studies, the most common vaccine-related side effects were injection site reactions and arthralgias. No measurable cell-mediated immune response (CMI) to CEA or HER2 was detected in patients by ELISPOT; however, a significant increase of both cell-mediated immunity and antibody titer against the bacterial heat labile toxin were observed upon vaccination. CONCLUSION: V930 vaccination alone or in combination with V932 was well tolerated without any vaccine-related serious adverse effects, and was able to induce measurable immune responses against bacterial antigen. However, the prime-boost strategy did not appear to augment any detectable CMI responses against either CEA or HER2. TRIAL REGISTRATION: Study 1 - ClinicalTrials.gov, NCT00250419; Study 2 - ClinicalTrials.gov, NCT00647114.


Assuntos
Adenoviridae/genética , Vacinas Anticâncer/uso terapêutico , Antígeno Carcinoembrionário/genética , Genes erbB-2 , Neoplasias/terapia , Vacinas de DNA/uso terapêutico , Idoso , Vacinas Anticâncer/efeitos adversos , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Plasmídeos , Vacinas de DNA/efeitos adversos
5.
Nucleic Acids Res ; 41(6): 3947-61, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396449

RESUMO

Oligonucleotides containing an immune-stimulatory motif and an immune-regulatory motif act as antagonists of Toll-like receptor (TLR)7 and TLR9. In the present study, we designed and synthesized oligonucleotide-based antagonists of TLR7, 8 and 9 containing a 7-deaza-dG or arabino-G modification in the immune-stimulatory motif and 2'-O-methylribonucleotides as the immune-regulatory motif. We evaluated the biological properties of these novel synthetic oligoribonucleotides as antagonists of TLRs 7, 8 and 9 in murine and human cell-based assays and in vivo in mice and non-human primates. In HEK293, mouse and human cell-based assays, the antagonist compounds inhibited signaling pathways and production of a broad range of cytokines, including tumour necrosis factor alpha (TNF-α), interleukin (IL)-12, IL-6, interferon (IFN)-α, IL-1ß and interferon gamma-induced protein (IP)-10, mediated by TLR7, 8 and 9. In vivo in mice, the antagonist compounds inhibited TLR7- and TLR9-mediated cytokine induction in a dose- and time-dependent fashion. Peripheral blood mononuclear cells (PBMCs) obtained from antagonist compound-treated monkeys secreted lower levels of TLR7-, 8- and 9-mediated cytokines than did PBMCs taken before antagonist administration. The antagonist compounds described herein provide novel agents for the potential treatment of autoimmune and inflammatory diseases.


Assuntos
Receptor 7 Toll-Like/antagonistas & inibidores , Receptor 8 Toll-Like/antagonistas & inibidores , Receptor Toll-Like 9/antagonistas & inibidores , Animais , Células Cultivadas , Citocinas/biossíntese , Feminino , Células HEK293 , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Oligorribonucleotídeos/química , Oligorribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/agonistas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Org Biomol Chem ; 11(6): 1049-58, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23292214

RESUMO

Double-stranded RNA of viral origin and enzymatically synthesized poly I:C act as agonists of TLR3 and induce immune responses. We have designed and synthesized double-stranded synthetic oligoribonucleotides (dsORNs) which act as agonists of TLR3. Each strand of dsORN contains two distinct segments, namely an alignment segment composed of a heteronucleotide sequence and an oligo inosine (I) or an oligo cytidine (C) segment. We report here the results of studies of dsORNs containing varying lengths and compositions of alignment and oligo I/oligo C segments. dsORNs of 50-mer length with a 15-mer alignment segment and a 35-mer oligo I/oligo C segment form stable duplexes under physiological conditions and induce TLR3-mediated immune responses. dsORNs activated the IRF3 signaling pathway in J774 cells, induced production of cytokines, including IFN-ß, IFN-α, IP-10, IL-12 and IL-6, in murine and human cell-based assays and also induced multiple cytokines following systemic administration in mice and non-human primates.


Assuntos
Desenho de Fármacos , Oligorribonucleotídeos/síntese química , Oligorribonucleotídeos/farmacologia , Receptor 3 Toll-Like/agonistas , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Oligorribonucleotídeos/química , Alinhamento de Sequência
7.
Oncoimmunology ; 1(8): 1258-1270, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23243589

RESUMO

Functional T-cell epitope discovery is a key process for the development of novel immunotherapies, particularly for cancer immunology. In silico epitope prediction is a common strategy to try to achieve this objective. However, this approach suffers from a significant rate of false-negative results and epitope ranking lists that often are not validated by practical experience. A high-throughput platform for the identification and prioritization of potential T-cell epitopes is the iTopia(TM) Epitope Discovery System(TM), which allows measuring binding and stability of selected peptides to MHC Class I molecules. So far, the value of iTopia combined with in silico epitope prediction has not been investigated systematically. In this study, we have developed a novel in silico selection strategy based on three criteria: (1) predicted binding to one out of five common MHC Class I alleles; (2) uniqueness to the antigen of interest; and (3) increased likelihood of natural processing. We predicted in silico and characterized by iTopia 225 candidate T-cell epitopes and fixed-anchor analogs from three human tumor-associated antigens: CEA, HER2 and TERT. HLA-A2-restricted fragments were further screened for their ability to induce cell-mediated responses in HLA-A2 transgenic mice. The iTopia binding assay was only marginally informative while the stability assay proved to be a valuable experimental screening method complementary to in silico prediction. Thirteen novel T-cell epitopes and analogs were characterized and additional potential epitopes identified, providing the basis for novel anticancer immunotherapies. In conclusion, we show that combination of in silico prediction and an iTopia-based assay may be an accurate and efficient method for MHC Class I epitope discovery among tumor-associated antigens.

8.
Arterioscler Thromb Vasc Biol ; 32(8): e72-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22628437

RESUMO

OBJECTIVE: The role of toll-like receptors (TLRs) in vascular remodeling is well established. However, the involvement of the endosomal TLRs is unknown. Here, we study the effect of combined blocking of TLR7 and TLR9 on postinterventional remodeling and accelerated atherosclerosis. METHODS AND RESULTS: In hypercholesterolemic apolipoprotein E*3-Leiden mice, femoral artery cuff placement led to strong increase of TLR7 and TLR9 presence demonstrated by immunohistochemistry. Blocking TLR7/9 with a dual antagonist in vivo reduced neointimal thickening and foam cell accumulation 14 days after surgery by 65.6% (P=0.0079). Intima/media ratio was reduced by 64.5% and luminal stenosis by 62.8%. The TLR7/9 antagonist reduced the arterial wall inflammation, with reduced macrophage infiltration, decreased cytoplasmic high-mobility group box 1 expression, and altered serum interleukin-10 levels. Stimulation of cultured macrophages with TLR7 and TLR9 ligands enhanced tumor necrosis factor-α expression, which is decreased by TLR7/9 antagonist coadministration. Additionally, the antagonist abolished the TLR7/9-enhanced low-density lipoprotein uptake. The antagonist also reduced oxidized low-density lipoprotein-induced foam cell formation, most likely not via decreased influx but via increased efflux, because CD36 expression was unchanged whereas interleukin-10 levels were higher (36.1 ± 22.3 pg/mL versus 128.9 ± 6.6 pg/mL; P=0.008). CONCLUSIONS: Blocking TLR7 and TLR9 reduced postinterventional vascular remodeling and foam cell accumulation indicating TLR7 and TLR9 as novel therapeutic targets.


Assuntos
Aterosclerose/etiologia , Movimento Celular , Vasos Coronários/patologia , Células Espumosas/fisiologia , Ativação de Macrófagos , Glicoproteínas de Membrana/fisiologia , Receptor 7 Toll-Like/fisiologia , Receptor Toll-Like 9/fisiologia , Angioplastia Coronária com Balão , Animais , Citocinas/biossíntese , Proteína HMGB1/análise , Lipoproteínas LDL/fisiologia , Glicoproteínas de Membrana/antagonistas & inibidores , Camundongos , Neointima/prevenção & controle , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor Toll-Like 9/antagonistas & inibidores
9.
Transl Oncol ; 4(1): 38-46, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21286376

RESUMO

RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON. Our screening yielded three high-affinity antibodies that efficiently block ligand-dependent intracellular AKT and MAPK signaling. This effect correlates with the strong reduction of ligand-activated migration of T47D breast cancer cell line. By cross-competition experiments, we showed that the antagonistic antibodies fall into three distinct epitope regions of the RON extracellular Sema domain. Notably, no inhibition of tumor growth was observed in different epithelial tumor xenografts in nude mice with any of the antibodies. These results suggest that distinct properties beside ligand antagonism are required for anti-RON mAbs to exert antitumor effects in vivo.

10.
Mol Ther ; 18(8): 1559-67, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20531395

RESUMO

Canine cancers occur with an incidence similar to that of humans and share many features with human malignancies including histological appearance, tumor genetics, biological behavior, and response to conventional therapies. As observed in humans, the telomerase reverse transcriptase (TERT) activity is largely confined to tumor tissues and absent in the majority of normal dog tissues. Therefore, dog TERT (dTERT) can constitute a valid target for translational cancer immunotherapy. We have evaluated the ability of adenovirus serotype 6 (Ad6) and DNA electroporation (DNA-EP) to induce immune responses against dTERT in dogs affected by malignant lymphoma (ML). The vaccine was combined with standard chemotherapy regimen [cyclophosphamide, vincristine, prednisone (COP)]. dTERT-specific immune response was induced in 13 out of 14 treated animals (93%) and remained detectable and long-lasting with the absence of autoimmunity or other side effects. Most interestingly, the survival time of vaccine/Chemo-treated dogs was significantly increased over historic controls of Chemo-treated animals (>97.8 versus 37 weeks, respectively, P = 0.001). Our results show that Ad6/DNA-EP-based cancer vaccine against dTERT overcomes host immune tolerance, should be combined with chemotherapy, induces long-lasting immune responses, and significantly prolongs the survival of ML canine patients. These data support further evaluation of this approach in human clinical trials.


Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia/métodos , Linfoma de Células B/imunologia , Telomerase/imunologia , Adenoviridae/genética , Animais , Cães , Eletroporação , Humanos , Linfoma de Células B/metabolismo
11.
BMC Cancer ; 10: 129, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20374648

RESUMO

BACKGROUND: Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol (GPI) anchored protein expressed not only in prostate but also in pancreas and bladder cancer as shown by immunohistochemistry and mRNA analysis. It has been targeted by monoclonal antibodies in preclinical animal models and more recently in a clinical trial in prostate cancer patients. The biological role played in tumor growth is presently unknown. In this report we have characterized the contribution of PSCA expression to tumor growth. METHODS: A bladder cell line was engineered to express a doxycycline (dox) regulated shRNA against PSCA. To shed light on the PSCA biological role in tumor growth, microarray analysis was carried out as a function of PSCA expression. Expression of gene set of interest was further analyzed by qPCR RESULTS: Down regulation of the PSCA expression was associated with reduced cell proliferation in vitro and in vivo. Mice bearing subcutaneous tumors showed a reduced tumor growth upon treatment with dox, which effectively induced shRNA against PSCA as revealed by GFP expression. Pathway analysis of deregulated genes suggests a statistical significant association between PSCA downregulation and activation of genes downstream of the IFNalpha/beta receptor. CONCLUSIONS: These experiments established for the first time a correlation between the level of PSCA expression and tumor growth and suggest a role of PSCA in counteracting the natural immune response.


Assuntos
Glicoproteínas de Membrana/biossíntese , Proteínas de Neoplasias/biossíntese , Neoplasias da Bexiga Urinária/patologia , Animais , Antígenos de Neoplasias , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Células Clonais , Regulação para Baixo , Doxiciclina/farmacologia , Feminino , Proteínas Ligadas por GPI , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Reação em Cadeia da Polimerase , Interferência de RNA , Transdução de Sinais/imunologia , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/metabolismo
12.
Vaccine ; 28(20): 3522-30, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20332048

RESUMO

The telomerase reverse transcriptase (TERT) is an attractive target for cancer vaccination because its expression is reactivated in most tumors. In this study, we have evaluated the ability of a genetic vaccine targeting murine TERT (mTERT) based on DNA electroporation (DNA-EP) and adenovirus serotype 6 (Ad6) to exert therapeutic effects in combination with a novel TLR9 agonist, referred to as immune modulatory oligonucleotide (IMO), as an adjuvant. IMO was administered to mice at the same time as vaccine. IMO induced dose-dependent cytokine secretion and activation of NK cells. Most importantly, vaccination of mice with IMO in combination with mTERT vaccine conferred therapeutic benefit in tumor bearing animals and this effect was associated with increased NK, DC and T cell tumor infiltration. These data show that appropriate combination of a DNA-EP/Ad6-based cancer vaccine against TERT with IMO induces multiple effects on innate and adaptive immune responses resulting in a significant antitumor efficacy.


Assuntos
Vacinas Anticâncer/imunologia , Telomerase/imunologia , Receptor Toll-Like 9/agonistas , Vacinas de DNA/imunologia , Imunidade Adaptativa , Adenoviridae , Adjuvantes Imunológicos/genética , Animais , Vacinas Anticâncer/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Eletroporação , Feminino , Imunidade Inata , Células Matadoras Naturais/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oligonucleotídeos/imunologia , Linfócitos T/imunologia , Vacinas de DNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Vaccine ; 28(5): 1201-8, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-19944791

RESUMO

Pet dogs represent a valuable pre-clinical model to assess the efficacy of oncology drugs. Additionally, canine cancers occur with an incidence similar to that of humans and share many features with human malignancies including histological appearance, tumor genetics, biological behavior and response to conventional therapies. The telomerase reverse transcriptase (TERT) is reactivated in most of human and dog tumors. Similarly, HER-2/neu oncoprotein is overexpressed in a proportion of canine breast cancers. Therefore, TERT and HER-2/neu can constitute valid tumor associated antigens (TAA), suitable targets for translational cancer immunotherapy in dogs. In this study, we have evaluated the ability of DNA electroporation (DNA-EP) and Adenovirus serotype 6 (Ad6) to induce immune responses against dog TERT (dTERT) and HER-2/neu in healthy dogs. Vaccination was effective in all treated animals and the adaptive immune response remained detectable and long-lasting in the absence of autoimmunity or other side-effects. Our results show that DNA-EP/Ad6-based cancer vaccine induces adaptive immune responses against TAA in canine subjects and support further evaluation of this approach in cancer dog patients.


Assuntos
Vacinas Anticâncer/imunologia , Imunização , Neoplasias Mamárias Animais/prevenção & controle , Receptor ErbB-2/imunologia , Imunidade Adaptativa , Adenoviridae , Animais , Vacinas Anticâncer/genética , Doenças do Cão , Cães , Eletroporação , Feminino , Humanos , Neoplasias Mamárias Animais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Receptor ErbB-2/genética , Telomerase
14.
Vaccine ; 28(1): 162-70, 2009 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-19799847

RESUMO

The HER-2/neu oncoprotein is a promising cancer vaccine target. We describe herein a novel HLA-A2.1-restricted epitope, encompassing amino acids 657-665 (AVVGILLVV), which is naturally presented by human breast and ovarian cell lines. HER-2/neu(657-665), [HER-2(9(657))], binds with high affinity to HLA-A2.1 molecules as revealed by a prediction algorithm (SYFPEITHI) and in functional assays. This peptide was found to be immunogenic in HLA-A2.1 transgenic (HHD) mice inducing peptide-specific CTL, which responded with increased IFNgamma production, degranulation, and in vitro as well as in vivo cytotoxicity. Most important, HER-2(9(657)) functioned as a therapeutic vaccine by enabling HHD mice to reject established transplantable tumors. Cured mice resisted tumor growth when re-challenged with the same tumor, demonstrating the capacity of HER-2(9(657)) to generate tumor-specific memory immune response. Finally, this peptide was also found to be immunogenic in PBMCs from HLA-A2.1(+) patients with HER-2/neu(+) breast cancer. Our data encourage further exploitation of HER-2(9(657)) as a promising candidate for peptide-based cancer vaccines.


Assuntos
Vacinas Anticâncer/imunologia , Epitopos/imunologia , Fragmentos de Peptídeos/imunologia , Receptor ErbB-2/imunologia , Animais , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Antígeno HLA-A2/imunologia , Humanos , Memória Imunológica , Interferon gama/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Transgênicos , Linfócitos T Citotóxicos/imunologia
15.
Mol Ther ; 17(10): 1804-13, 2009 10.
Artigo em Inglês | MEDLINE | ID: mdl-19623161

RESUMO

The human telomerase reverse transcriptase (hTERT) is an attractive target for human cancer vaccination because its expression is reactivated in most human tumors. We have evaluated the ability of DNA electroporation (DNA-EP) and adenovirus serotype 6 (Ad6) to induce immune responses against hTERT in nonhuman primates (NHPs) (Macaca mulatta). Vaccination was effective in all treated animals, and the adaptive immune response remained detectable and long lasting without side effects. To further enhance the efficacy of the hTERT vaccine, we evaluated the combination of hTERT vaccine and a novel TLR9 agonist, referred to as immunomodulatory oligonucleotide (IMO). Monkeys were dosed weekly with IMO concurrently with the vaccine regimen and showed increases in cytokine secretion and activation of natural killer (NK) cells compared with the group that received vaccine alone. Using a peptide array, a specific profile of B-cell reactive epitopes was identified when hTERT vaccine was combined with IMO. The combination of IMO with hTERT genetic vaccine did not impact vaccine-induced TERT-specific cell-mediated immunity. Our results show that appropriate combination of a DNA-EP/Ad6-based cancer vaccine against hTERT with IMO induces multiple effects on innate and adaptive immune responses in NHPs.


Assuntos
Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Telomerase/imunologia , Receptor Toll-Like 9/agonistas , Adenoviridae/genética , Animais , Eletroporação , Epitopos de Linfócito B/imunologia , Imunidade Celular/imunologia , Imunidade Inata/genética , Interferon-alfa/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Macaca mulatta , Telomerase/genética
16.
Clin Cancer Res ; 15(12): 4104-13, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19509157

RESUMO

PURPOSE: Matrix metalloproteinases (MMP) are zinc-dependent endopeptidases that mediate numerous physiologic and pathologic processes, including matrix degradation, tissue remodeling, inflammation, and tumor metastasis. To develop a vaccine targeting stromal antigens expressed by cancer-associated fibroblasts, we focused on MMP11 (or stromelysin 3). MMP11 expression correlates with aggressive profile and invasiveness of different types of carcinoma. EXPERIMENTAL DESIGN: To show the efficacy of a vaccine targeting MMP11, we constructed a series of plasmid DNA vectors expressing murine MMP11. Mice were vaccinated by i.m. injection followed by in vivo DNA electroporation. A chemically induced, MMP11-overexpressing colon cancer model was established and characterized. Antibody and T-cell responses were determined, and immunoreactive epitopes were characterized. To analyze the possible use of MMP11 as tumor-associated antigen in cancer patients, HLA-A2.1 transgenic mice (HHD) were used to identify reactive epitopes as tools to assess immunogenicity in humans. RESULTS: Using microarray, we confirmed the overexpression of MMP11 mRNA in a large panel of human tumor samples. MMP11 vaccine induced cell mediated and antibody immune response and exerted significant antitumoral protection in mice with colon cancer in prophylactic and therapeutic settings. HHD transgenic mice were vaccinated with a plasmid encoding human MMP11, and a HLA-A2.1--restricted epitope (hMMP(237)) was identified. hMMP(237) was shown to be immunogenic in human peripheral blood mononuclear cells (PBMC) by in vitro priming. CONCLUSION: Our study describes the identification of MMP11 as a novel broadly expressed tumor associated antigen as target candidate for cancer immunotherapy.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/uso terapêutico , Metaloproteinase 11 da Matriz/imunologia , Inibidores de Metaloproteinases de Matriz , Neoplasias/terapia , Animais , Epitopos/imunologia , Antígeno HLA-A2/imunologia , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neoplasias/imunologia , Transfecção
17.
J Immunother ; 32(7): 744-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19561534

RESUMO

Human leukocyte antigen (HLA)-A2.1 transgenic mice (HHD) represent a valuable model to study and predict the immunogenicity of vaccines against pathogens. However, HHD mice are unsuitable for in vivo studies of cancer vaccines against human tumor-associated antigens because they lack T-cell tolerance that is key to define the potency of the treatment. In this study, we developed HHD/carcinoembryonic antigen P(CEA) hybrid mice by breeding transgenic mice homozygous for CEA with HHD. These mice express human CEA, present epitopes solely through HLA-A2.1 molecules and constitute a unique in vivo animal model to study HLA-A2.1-restricted immune response of a human CEA-based vaccine. Owing to the immune tolerance, HHD/CEA mice show a limited immune response and expansion of a different and restricted T-cell receptor repertoire after antigen-specific stimulation. Our data show that genetic vectors expressing CEA and peptide-based vaccines are able to efficiently break immune tolerance against CEA and to elicit strong immune response against HLA-A2.1-restricted CEA epitopes. Most importantly, efficient lysis of human CEA+/HLA-A2.1+ tumor cells was observed and significant protection against HHD/CEA tumor cells was achieved in HHD/CEA-vaccinated mice. Hence, HHD/CEA provides a relevant model for the evaluation of the potential efficacy of human CEA-based vaccines.


Assuntos
Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/imunologia , Antígeno HLA-A2/imunologia , Melanoma Experimental/imunologia , Adenoviridae/genética , Animais , Vacinas Anticâncer/administração & dosagem , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Fezes/química , Feminino , Citometria de Fluxo , Trato Gastrointestinal/metabolismo , Antígenos H-2/imunologia , Antígeno HLA-A2/genética , Antígeno HLA-A2/metabolismo , Humanos , Masculino , Melanoma Experimental/patologia , Melanoma Experimental/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transfecção , Vacinação/métodos
18.
J Hepatol ; 51(2): 271-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19464068

RESUMO

BACKGROUND/AIMS: The immunomodulatory active hepatitis C virus (HCV) has been shown to interfere with antiviral interferon (IFN) type I functions. The aim of the study was to determine whether further basic innate immunologic functions are influenced by HCV. METHODS: The acute phase response (APR) was induced in HCV transgenic (tg) mice and C57BL/6J control mice using lipopolysaccharide. Activation of transcription factors, mRNA expression and production of cytokines and acute phase proteins (APP) were determined. IFN type I and tumor necrosis factor (TNF) alpha signalling were investigated after polyI:C or TNF-alpha treatment. RESULTS: HCV tg mice showed an attenuated APR: hepatic activation of nuclear factor kappa B (NFkappaB) and interferon-stimulated gene factor 3 (ISGF3), hepatic expression of interleukin (IL) 6, IL-10, and IFN-gamma mRNA, serum concentrations of IL-6 and IFN-gamma and production of type II acute phase proteins were reduced compared to wild-type mice. While no differences in NFkappaB activation could be detected after TNF-alpha injection, HCV tg mice showed reduced activation of ISGF3 and reduced transactivation of IFN target genes after polyI:C treatment. CONCLUSIONS: Besides antiviral defence mechanisms, interruption of IFN type I signalling by HCV modulates the APR which is aimed at a variety of pathogens.


Assuntos
Reação de Fase Aguda/fisiopatologia , Hepacivirus/imunologia , Hepacivirus/patogenicidade , Interferon Tipo I/fisiologia , Fígado/fisiopatologia , Proteínas de Fase Aguda/metabolismo , Reação de Fase Aguda/genética , Reação de Fase Aguda/imunologia , Animais , Sequência de Bases , Citocinas/sangue , Citocinas/genética , Primers do DNA/genética , Feminino , Hepacivirus/genética , Antígenos da Hepatite C/genética , Fator Gênico 3 Estimulado por Interferon/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/fisiologia , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia
19.
Hum Gene Ther ; 20(3): 253-65, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19257854

RESUMO

Aberrant Her2/neu expression is associated with the development of epithelial-derived human carcinomas and for this reason it is considered a good target for immunologic intervention. To define methods to circumvent immunologic tolerance and to elicit immunity against the Her2/neu tumor-associated antigen in a suitable animal model, we have isolated the cDNA encoding the rhesus monkey homolog of human Her2/neu (RhErbB2) to construct DNA plasmids and adenoviral vectors for the development of a cancer vaccine against this protein. To further increase the immunogenic potency of these vectors, a synthetic codon-optimized RhErbB2 cDNA (RhErbB2OPT) was constructed and characterized. Genetic vaccination of rhesus monkeys was effective in inducing a response against RhErbB2 in immunized animals; importantly, the elicited immunity was associated with natural RhErbB2 polymorphisms, thus distinguishing responses against "self " and "nonself " epitopes. In particular, the postpriming response recognized mainly nonself epitopes whereas the boosted response cross-reacted with self epitopes. Our findings are particularly relevant in the investigation of the impact of TAA polymorphisms on the efficacy of a cancer vaccine strategy.


Assuntos
Genes erbB-2 , Neoplasias Epiteliais e Glandulares , Polimorfismo de Nucleotídeo Único , Vacinas de DNA/uso terapêutico , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Humanos , Imunidade Celular , Imunização Secundária , Macaca mulatta , Camundongos , Dados de Sequência Molecular , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/imunologia , Neoplasias Epiteliais e Glandulares/terapia , Proteínas Recombinantes/biossíntese , Tolerância a Antígenos Próprios , Análise de Sequência de DNA
20.
BMC Genomics ; 10: 135, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19327144

RESUMO

BACKGROUND: Spontaneous tumors in dog have been demonstrated to share many features with their human counterparts, including relevant molecular targets, histological appearance, genetics, biological behavior and response to conventional treatments. Mammary tumors in dog therefore provide an attractive alternative to more classical mouse models, such as transgenics or xenografts, where the tumour is artificially induced. To assess the extent to which dog tumors represent clinically significant human phenotypes, we performed the first genome-wide comparative analysis of transcriptional changes occurring in mammary tumors of the two species, with particular focus on the molecular pathways involved. RESULTS: We analyzed human and dog gene expression data derived from both tumor and normal mammary samples. By analyzing the expression levels of about ten thousand dog/human orthologous genes we observed a significant overlap of genes deregulated in the mammary tumor samples, as compared to their normal counterparts. Pathway analysis of gene expression data revealed a great degree of similarity in the perturbation of many cancer-related pathways, including the 'PI3K/AKT', 'KRAS', 'PTEN', 'WNT-beta catenin' and 'MAPK cascade'. Moreover, we show that the transcriptional relationships between different gene signatures observed in human breast cancer are largely maintained in the canine model, suggesting a close interspecies similarity in the network of cancer signalling circuitries. CONCLUSION: Our data confirm and further strengthen the value of the canine mammary cancer model and open up new perspectives for the evaluation of novel cancer therapeutics and the development of prognostic and diagnostic biomarkers to be used in clinical studies.


Assuntos
Neoplasias da Mama/genética , DNA de Neoplasias/genética , Perfilação da Expressão Gênica , Neoplasias Mamárias Animais/genética , Animais , Análise por Conglomerados , Hibridização Genômica Comparativa , Biologia Computacional , Modelos Animais de Doenças , Doenças do Cão/genética , Cães , Regulação Neoplásica da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA