Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38398083

RESUMO

Thanks to new technologies using artificial intelligence (AI) and machine learning, it is possible to use large amounts of data to try to extract information that can be used for personalized medicine. The great challenge of the future is, on the one hand, to acquire masses of biological data that nowadays are still limited and, on the other hand, to develop innovative strategies to extract information that can then be used for the development of predictive models. From this perspective, we discuss these aspects in the context of triple-negative breast cancer, a tumor where a specific treatment is still lacking and new therapies, such as immunotherapy, are under investigation. Since immunotherapy is already in use for other tumors such as melanoma, we discuss the strengths and weaknesses identified in the use of immunotherapy with melanoma to try to find more successful strategies. It is precisely in this context that AI and predictive tools can be extremely valuable. Therefore, the discoveries and advancements in immunotherapy for melanoma provide a foundation for developing effective immunotherapies for triple-negative breast cancer. Shared principles, such as immune system activation, checkpoint inhibitors, and personalized treatment, can be applied to TNBC to improve patient outcomes and offer new hope for those with aggressive, hard-to-treat breast cancer.

2.
Phys Biol ; 20(5)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37348493

RESUMO

Recent years have seen a tremendous growth of interest in understanding the role that the adaptive immune system could play in interdicting tumor progression. In this context, it has been shown that the density of adaptive immune cells inside a solid tumor serves as a favorable prognostic marker across different types of cancer. The exact mechanisms underlying the degree of immune cell infiltration is largely unknown. Here, we quantify the temporal dynamics of the density profile of activated immune cells around a solid tumor spheroid. We propose a computational model incorporating immune cells with active, persistent movement and a proliferation rate that depends on the presence of cancer cells, and show that the model able to reproduce semi-quantitatively the experimentally measured infiltration profile. Studying the density distribution of immune cells inside a solid tumor can help us better understand immune trafficking in the tumor micro-environment, hopefully leading towards novel immunotherapeutic strategies.


Assuntos
Esferoides Celulares , Microambiente Tumoral , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047393

RESUMO

It would be highly desirable to find prognostic and predictive markers for triple-negative breast cancer (TNBC), a strongly heterogeneous and invasive breast cancer subtype often characterized by a high recurrence rate and a poor outcome. Here, we investigated the prognostic and predictive capabilities of ARIADNE, a recently developed transcriptomic test focusing on the epithelial-mesenchymal transition. We first compared the stratification of TNBC patients obtained by ARIADNE with that based on other common pathological indicators, such as grade, stage and nodal status, and found that ARIADNE was more effective than the other methods in dividing patients into groups with different disease-free survival statistics. Next, we considered the response to neoadjuvant chemotherapy and found that the classification provided by ARIADNE led to statistically significant differences in the rates of pathological complete response within the groups.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Terapia Neoadjuvante/métodos , Transição Epitelial-Mesenquimal/genética , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
4.
Cells Tissues Organs ; 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36509081

RESUMO

Tumor plasticity is an emerging property of tumor cells which allows them to change their phenotype in dependence on the environment. The epithelial-mesenchymal transition plays a crucial role in helping cells to acquire a more aggressive phenotype when they are in the mesenchymal state. Herein we investigated the biophysical changes occurring during phenotypic switching in human melanoma cells considering the blebbines of the nuclei, their stiffness and the involvement of polycombs with lamins. We show that the formation of cellular heterogeneity involves many crucial nuclear changes including the interaction between different types of polycombs with lamins and chromosome accessibility. All together our results shed new light on the molecular mechanisms involved in the formation of an heterogeneous cell population during phenotypic switching. In particular, our results show that phenotypic switching in melanoma involves chromatin remodeling changing the transcriptional activity of cells and consequently their phenotype.

5.
Sci Rep ; 12(1): 9651, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688895

RESUMO

Triple-negative breast cancer (TNBC) accounts for about 15-20% of all breast cancers and differs from other invasive breast cancer types because it grows and spreads rapidly, it has limited treatment options and typically worse prognosis. Since TNBC does not express estrogen or progesterone receptors and little or no human epidermal growth factor receptor (HER2) proteins are present, hormone therapy and drugs targeting HER2 are not helpful, leaving chemotherapy only as the main systemic treatment option. In this context, it would be important to find molecular signatures able to stratify patients into high and low risk groups. This would allow oncologists to suggest the best therapeutic strategy in a personalized way, avoiding unnecessary toxicity and reducing the high costs of treatment. Here we compare two independent patient stratification strategies for TNBC based on gene expression data: The first is focusing on the epithelial mesenchymal transition (EMT) and the second on the tumor immune microenvironment. Our results show that the two stratification strategies are not directly related, suggesting that the aggressiveness of the tumor can be due to a multitude of unrelated factors. In particular, the EMT stratification is able to identify a high-risk population with high immune markers that is, however, not properly classified by the tumor immune microenvironment based strategy.


Assuntos
Neoplasias de Mama Triplo Negativas , Transição Epitelial-Mesenquimal/genética , Humanos , Prognóstico , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética
6.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445066

RESUMO

Tumor microenvironments are often characterized by an increase in oxidative stress levels. We studied the response to oxidative stimulation in human primary (IGR39) or metastatic (IGR37) cell lines obtained from the same patient, performing patch-clamp recordings, intracellular calcium ([Ca2+]i) imaging, and RT-qPCR gene expression analysis. In IGR39 cells, chloramine-T (Chl-T) activated large K+ currents (KROS) that were partially sensitive to tetraethylammonium (TEA). A large fraction of KROS was inhibited by paxilline-a specific inhibitor of large-conductance Ca2+-activated BK channels. The TEA-insensitive component was inhibited by senicapoc-a specific inhibitor of the Ca2+-activated KCa3.1 channel. Both BK and KCa3.1 activation were mediated by an increase in [Ca2+]i induced by Chl-T. Both KROS and [Ca2+]i increase were inhibited by ACA and clotrimazole-two different inhibitors of the calcium-permeable TRPM2 channel. Surprisingly, IGR37 cells did not exhibit current increase upon the application of Chl-T. Expression analysis confirmed that the genes encoding BK, KCa3.1, and TRPM2 are much more expressed in IGR39 than in IGR37. The potassium currents and [Ca2+]i increase observed in response to the oxidizing agent strongly suggest that these three molecular entities play a major role in the progression of melanoma. Pharmacological targeting of either of these ion channels could be a new strategy to reduce the metastatic potential of melanoma cells, and could complement classical radio- or chemotherapeutic treatments.


Assuntos
Cálcio/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Melanoma/metabolismo , Canais de Cátion TRPM/metabolismo , Linhagem Celular Tumoral , Humanos , Oxirredução
7.
Cell Syst ; 12(5): 457-462.e4, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33961788

RESUMO

Predicting the metastasis risk in patients with a primary breast cancer tumor is of fundamental importance to decide the best therapeutic strategy in the framework of personalized medicine. Here, we present ARIADNE, a general algorithmic strategy to assess the risk of metastasis from transcriptomic data of patients with triple-negative breast cancer, a subtype of breast cancer with poorer prognosis with respect to the other subtypes. ARIADNE identifies hybrid epithelial/mesenchymal phenotypes by mapping gene expression data into the states of a Boolean network model of the epithelial-mesenchymal pathway. Using this mapping, it is possible to stratify patients according to their prognosis, as we show by validating the strategy with three independent cohorts of triple-negative breast cancer patients. Our strategy provides a prognostic tool that could be applied to other biologically relevant pathways, in order to estimate the metastatic risk for other breast cancer subtypes or other tumor types. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Neoplasias de Mama Triplo Negativas , Transição Epitelial-Mesenquimal/genética , Humanos , Revisão por Pares , Neoplasias de Mama Triplo Negativas/genética
8.
Cell Syst ; 11(4): 412-417.e2, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32916095

RESUMO

Epidemiological studies show that SARS-CoV-2 infection leads to severe symptoms only in a fraction of patients, but the determinants of individual susceptibility to the virus are still unknown. The major histocompatibility complex (MHC) class I exposes viral peptides in all nucleated cells and is involved in the susceptibility to many human diseases. Here, we use artificial neural networks to analyze the binding of SARS-CoV-2 peptides with polymorphic human MHC class I molecules. In this way, we identify two sets of haplotypes present in specific human populations: the first displays weak binding with SARS-CoV-2 peptides, while the second shows strong binding and T cell propensity. Our work offers a useful support to identify the individual susceptibility to COVID-19 and illustrates a mechanism underlying variations in the immune response to SARS-CoV-2. A record of this paper's transparent peer review process is included in the Supplemental Information.


Assuntos
Betacoronavirus/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Redes Neurais de Computação , Peptídeos/imunologia , Polimorfismo Genético , Proteínas Virais/imunologia , Haplótipos , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Peptídeos/química , Ligação Proteica , SARS-CoV-2 , Proteínas Virais/química
9.
Nat Cell Biol ; 22(9): 1103-1115, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32839548

RESUMO

Plasticity of cancer invasion and metastasis depends on the ability of cancer cells to switch between collective and single-cell dissemination, controlled by cadherin-mediated cell-cell junctions. In clinical samples, E-cadherin-expressing and -deficient tumours both invade collectively and metastasize equally, implicating additional mechanisms controlling cell-cell cooperation and individualization. Here, using spatially defined organotypic culture, intravital microscopy of mammary tumours in mice and in silico modelling, we identify cell density regulation by three-dimensional tissue boundaries to physically control collective movement irrespective of the composition and stability of cell-cell junctions. Deregulation of adherens junctions by downregulation of E-cadherin and p120-catenin resulted in a transition from coordinated to uncoordinated collective movement along extracellular boundaries, whereas single-cell escape depended on locally free tissue space. These results indicate that cadherins and extracellular matrix confinement cooperate to determine unjamming transitions and stepwise epithelial fluidization towards, ultimately, cell individualization.


Assuntos
Neoplasias da Mama/patologia , Adesão Celular/fisiologia , Invasividade Neoplásica/patologia , Junções Aderentes/patologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Junções Intercelulares/patologia , Células MCF-7 , Camundongos Endogâmicos BALB C
10.
iScience ; 23(5): 101073, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32361595

RESUMO

The distribution patterns of cancer metastasis depend on a sequence of steps involving adhesion molecules and on mechanical and geometrical effects related to blood circulation, but how much each of these two aspects contributes to the metastatic spread of a specific tumor is still unknown. Here we address this question by simulating cancer cell trajectories in a high-resolution humanoid model of global blood circulation, including stochastic adhesion events, and comparing the results with the location of metastasis recorded in thousands of human autopsies for seven different solid tumors, including lung, prostate, pancreatic and colorectal cancers, showing that on average 40% of the variation in the metastatic distribution can be attributed to blood circulation. Our humanoid model of circulating tumor cells allows us to predict the metastatic spread in specific realistic conditions and can therefore guide precise therapeutic interventions to fight metastasis.

11.
NPJ Syst Biol Appl ; 6(1): 15, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424264

RESUMO

Metastasis is the cause of over 90% of cancer-related deaths. Cancer cells undergoing metastasis can switch dynamically between different phenotypes, enabling them to adapt to harsh challenges, such as overcoming anoikis and evading immune response. This ability, known as phenotypic plasticity, is crucial for the survival of cancer cells during metastasis, as well as acquiring therapy resistance. Various biochemical networks have been identified to contribute to phenotypic plasticity, but how plasticity emerges from the dynamics of these networks remains elusive. Here, we investigated the dynamics of various regulatory networks implicated in Epithelial-mesenchymal plasticity (EMP)-an important arm of phenotypic plasticity-through two different mathematical modelling frameworks: a discrete, parameter-independent framework (Boolean) and a continuous, parameter-agnostic modelling framework (RACIPE). Results from either framework in terms of phenotypic distributions obtained from a given EMP network are qualitatively similar and suggest that these networks are multi-stable and can give rise to phenotypic plasticity. Neither method requires specific kinetic parameters, thus our results emphasize that EMP can emerge through these networks over a wide range of parameter sets, elucidating the importance of network topology in enabling phenotypic plasticity. Furthermore, we show that the ability to exhibit phenotypic plasticity correlates positively with the number of positive feedback loops in a given network. These results pave a way toward an unorthodox network topology-based approach to identify crucial links in a given EMP network that can reduce phenotypic plasticity and possibly inhibit metastasis-by reducing the number of positive feedback loops.


Assuntos
Adaptação Fisiológica/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Redes Reguladoras de Genes/genética , Humanos , Modelos Biológicos , Metástase Neoplásica/genética , Fenótipo
12.
Toxicol In Vitro ; 65: 104818, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32135238

RESUMO

Cigarette smoke (CS) is one of the most important preventable risk factors for the development of respiratory diseases, cardiovascular diseases, stroke, and various types of cancer. Due to its high intracellular concentration and central role in maintaining the cellular redox state, glutathione (GSH) is one of the key players in several enzymatic and non-enzymatic reactions necessary for protecting cells against CS-induced oxidative stress. A plethora of in vitro cell models have been used over the years to assess the effects of CS on intracellular GSH and its disulphide forms, i.e. glutathione disulphide (GSSG) and S-glutathionylated proteins. In this review, we described the effects of cell exposure to CS on cellular GSH and formation of its oxidized forms and adducts (GSH-conjugates). We also discussed the limitations and relevance of in vitro cell models of exposure to CS and critically assessed the congruence between smokers and in vitro cell models. What emerges clearly is that results obtained in vitro should be interpreted with extreme caution, bearing in mind the limitations of the specific cell model used. Despite this, in vitro cell models remain important tools in the assessment of CS-induced oxidative damage.


Assuntos
Glutationa/metabolismo , Modelos Biológicos , Nicotiana , Fumaça/efeitos adversos , Animais , Humanos
13.
Cancer Drug Resist ; 3(2): 140-148, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35582613

RESUMO

Melanoma is a highly aggressive tumor and almost always fatal when metastatic. Herein, we discuss recent findings on the mechanisms of resistance of human cutaneous melanoma. To achieve a precision medicine approach, the heterogeneity and plasticity of tumor cells are two crucial aspects to be investigated in depth. In fact, to understand the mechanisms that cells use to acquire a resistant phenotype after chemotherapy or how resistant cells inside the tumor are selected, it is the most important issue for a successful therapy. Since new therapeutic strategies are trying to go in this direction, we discuss here the state of the art of the research and the clinical impact of these strategies. We also discuss and suggest future research directions to develop approaches able to define the best concentration and time of exposure of the drug or the cocktails of drugs for each specific patient based on his/her biological features.

14.
Cancer Microenviron ; 12(2-3): 95-104, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31734859

RESUMO

CircularRNAs (circRNAs) are non-coding RNAs which compete for microRNA (miRNA) binding, influencing the abundance and stability of other RNA species. Herein we have investigated the effect of circRNAs on the mir200-ZEB1 feedback loop in relationship with the aggressiveness of human melanoma cells. We first compared the level of expression of key factors in the mir200-ZEB1 feedback loop in primary human melanoma cells compared with their matching metastatic one and found a correlation between the aggressiveness of the cells and the level of expression of ZEB1 and SNAI1. We also analyzed factors in the mir200-ZEB1 feedback loop, including circZEB1, during the phenotypic switching of human melanoma cells. Our results showed a correlation between the level of ZEB1 and SNAI1 and the fraction of cancer stem cells in the population. The level of circZEB1 was, however, consistently high during the entire phenotypic transformation. To understand this result we propose a mathematical model of the regulatory circuit. According to the model, the experimental observations can be explained by the presence of a back-splicing factor limiting circRNA production.

15.
Sci Rep ; 9(1): 7615, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110208

RESUMO

There is still no successful strategy to treat Huntington's disease, an inherited autosomal disorder associated with the aggregation of mutated forms of the huntingtin protein containing polyglutamine tracts with more than 36 repeats. Recent experimental evidence is challenging the conventional view of the disease by revealing transcellular transfer of mutated huntingtin proteins which are able to seed oligomers involving wild type forms of the protein. Here we decipher the molecular mechanism of this unconventional heterogeneous oligomerization by performing discrete molecular dynamics simulations. We identify the most probable oligomer conformations and the molecular regions that can be targeted to destabilize them. Our computational findings are complemented experimentally by fluorescence-lifetime imaging microscopy/fluorescence resonance energy transfer (FLIM-FRET) of cells co-transfected with huntingtin proteins containing short and large polyglutamine tracts. Our work clarifies the structural features responsible for heterogeneous huntingtin aggregation with possible implications to contrast the prion-like spreading of Huntington's disease.


Assuntos
Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutação/genética , Peptídeos/metabolismo , Prenilação de Proteína/genética , Transfecção/métodos
16.
Semin Cancer Biol ; 53: 42-47, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30017637

RESUMO

Facing metastasis is the most pressing challenge of cancer research. In this review, we discuss recent advances in understanding phenotypic plasticity of cancer cells, highlighting the kinetics of cancer stem cell and the role of the epithelial mesenchymal transition for metastasis. It appears that the tumor micro-environment plays a crucial role in triggering phenotypic transitions, as we illustrate discussing the challenges posed by macrophages and cancer associated fibroblasts. To disentangle the complexity of environmentally induced phenotypic transitions, there is a growing need for novel advanced algorithms as those proposed in our recent work combining single cell data analysis and numerical simulations of gene regulatory networks. We conclude discussing recent developments in artificial intelligence and its applications to personalized cancer treatment.


Assuntos
Inteligência Artificial , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Redes Reguladoras de Genes , Humanos , Macrófagos/metabolismo , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia , Microambiente Tumoral/genética
17.
Proc Natl Acad Sci U S A ; 115(23): 5902-5907, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784817

RESUMO

The transition between epithelial and mesenchymal states has fundamental importance for embryonic development, stem cell reprogramming, and cancer progression. Here, we construct a topographic map underlying epithelial-mesenchymal transitions using a combination of numerical simulations of a Boolean network model and the analysis of bulk and single-cell gene expression data. The map reveals a multitude of metastable hybrid phenotypic states, separating stable epithelial and mesenchymal states, and is reminiscent of the free energy measured in glassy materials and disordered solids. Our work not only elucidates the nature of hybrid mesenchymal/epithelial states but also provides a general strategy to construct a topographic representation of phenotypic plasticity from gene expression data using statistical physics methods.


Assuntos
Epigênese Genética/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias/genética , Neoplasias/metabolismo , Linhagem Celular Tumoral , Bases de Dados Genéticas , Fractais , Humanos , Modelos Estatísticos , Fenótipo
18.
Soft Matter ; 14(19): 3774-3782, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29713711

RESUMO

Cell monolayers provide an interesting example of active matter, exhibiting a phase transition from flowing to jammed states as they age. Here we report experiments and numerical simulations illustrating how a jammed cellular layer rapidly reverts to a flowing state after a wound. Quantitative comparison between experiments and simulations shows that cells change their self-propulsion and alignment strength so that the system crosses a phase transition line, which we characterize by finite-size scaling in an active particle model. This wound-induced unjamming transition is found to occur generically in epithelial, endothelial and cancer cells.


Assuntos
Movimento Celular , Modelos Biológicos , Células HeLa , Humanos
19.
NPJ Syst Biol Appl ; 3: 18, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685099

RESUMO

Obesity is a pandemic disease, linked to the onset of type 2 diabetes and cancer. Transcriptomic data provides a picture of the alterations in regulatory and metabolic activities associated with obesity, but its interpretation is typically blurred by noise. Here, we solve this problem by collecting publicly available transcriptomic data from adipocytes and removing batch effects using singular value decomposition. In this way we obtain a gene expression signature of 38 genes associated to obesity and identify the main pathways involved. We then show that similar deregulation patterns can be detected in peripheral markers, in type 2 diabetes and in breast cancer. The integration of different data sets combined with the study of pathway deregulation allows us to obtain a more complete picture of gene-expression patterns associated with obesity, breast cancer, and diabetes.

20.
Semin Cancer Biol ; 44: 3-9, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28254567

RESUMO

In this review, we discuss recent advances on the plasticity of cancer stem cells and highlight their relevance to understand the metastatic process and to guide therapeutic interventions. Recent results suggest that the strict hierarchical structure of cancer cell populations advocated by the cancer stem cell model must be reconsidered since the depletion of cancer stem cells leads the other tumor cells to switch back into the cancer stem cell phenotype. This plasticity has important implications for metastasis since migrating cells do not need to be cancer stem cells in order to seed a metastasis. We also discuss the important role of the immune system and the microenvironment in modulating phenotypic switching and suggest possible avenues to exploit our understanding of this process to develop an effective strategy for precision medicine.


Assuntos
Linhagem da Célula/genética , Neoplasias/genética , Células-Tronco Neoplásicas , Microambiente Tumoral/genética , Movimento Celular/genética , Humanos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA