Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells ; 35(9): 2050-2059, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28631381

RESUMO

Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC-mediated FGF2 secretion is essential for hPSC self-renewal, and its lack mediates specific differentiation. Following both short hairpin RNA- and small interfering RNA-mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2-mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050-2059.


Assuntos
Linhagem da Célula , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/enzimologia , Proteínas Tirosina Quinases/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Proteínas Recombinantes/farmacologia
2.
J Biol Chem ; 291(34): 17787-803, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27382052

RESUMO

Fibroblast growth factor 2 (FGF2) is a potent mitogen promoting both tumor cell survival and tumor-induced angiogenesis. It is secreted by an unconventional secretory mechanism that is based upon direct translocation across the plasma membrane. Key steps of this process are (i) phosphoinositide-dependent membrane recruitment, (ii) FGF2 oligomerization and membrane pore formation, and (iii) extracellular trapping mediated by membrane-proximal heparan sulfate proteoglycans. Efficient secretion of FGF2 is supported by Tec kinase that stimulates membrane pore formation based upon tyrosine phosphorylation of FGF2. Here, we report the biochemical characterization of the direct interaction between FGF2 and Tec kinase as well as the identification of small molecules that inhibit (i) the interaction of FGF2 with Tec, (ii) tyrosine phosphorylation of FGF2 mediated by Tec in vitro and in a cellular context, and (iii) unconventional secretion of FGF2 from cells. We further demonstrate the specificity of these inhibitors for FGF2 because tyrosine phosphorylation of a different substrate of Tec is unaffected in their presence. Building on previous evidence using RNA interference, the identified compounds corroborate the role of Tec kinase in unconventional secretion of FGF2. In addition, they are valuable lead compounds with great potential for drug development aiming at the inhibition of FGF2-dependent tumor growth and metastasis.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Fator 2 de Crescimento de Fibroblastos/genética , Humanos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/genética , Interferência de RNA
3.
J Biol Chem ; 290(45): 27015-27020, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26416892

RESUMO

For a long time, protein transport into the extracellular space was believed to strictly depend on signal peptide-mediated translocation into the lumen of the endoplasmic reticulum. More recently, this view has been challenged, and the molecular mechanisms of unconventional secretory processes are beginning to emerge. Here, we focus on unconventional secretion of fibroblast growth factor 2 (FGF2), a secretory mechanism that is based upon direct protein translocation across plasma membranes. Through a combination of genome-wide RNAi screening approaches and biochemical reconstitution experiments, the basic machinery of FGF2 secretion was identified and validated. This includes the integral membrane protein ATP1A1, the phosphoinositide phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and Tec kinase, as well as membrane-proximal heparan sulfate proteoglycans on cell surfaces. Hallmarks of unconventional secretion of FGF2 are: (i) sequential molecular interactions with the inner leaflet along with Tec kinase-dependent tyrosine phosphorylation of FGF2, (ii) PI(4,5)P2-dependent oligomerization and membrane pore formation, and (iii) extracellular trapping of FGF2 mediated by heparan sulfate proteoglycans on cell surfaces. Here, we discuss new developments regarding this process including the mechanism of FGF2 oligomerization during membrane pore formation, the functional role of ATP1A1 in FGF2 secretion, and the possibility that other proteins secreted by unconventional means make use of a similar mechanism to reach the extracellular space. Furthermore, given the prominent role of extracellular FGF2 in tumor-induced angiogenesis, we will discuss possibilities to develop highly specific inhibitors of FGF2 secretion, a novel approach that may yield lead compounds with a high potential to develop into anti-cancer drugs.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/genética , Complexo de Golgi/metabolismo , Heparitina Sulfato/metabolismo , Humanos , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerização Proteica , Sinais Direcionadores de Proteínas , Estrutura Quaternária de Proteína , Transporte Proteico , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , ATPase Trocadora de Sódio-Potássio/metabolismo
4.
J Biol Chem ; 290(6): 3654-65, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25533462

RESUMO

Previous studies proposed a role for the Na/K-ATPase in unconventional secretion of fibroblast growth factor 2 (FGF2). This conclusion was based upon pharmacological inhibition of FGF2 secretion in the presence of ouabain. However, neither independent experimental evidence nor a potential mechanism was provided. Based upon an unbiased RNAi screen, we now report the identification of ATP1A1, the α1-chain of the Na/K-ATPase, as a factor required for efficient secretion of FGF2. As opposed to ATP1A1, down-regulation of the ß1- and ß3-chains (ATP1B1 and ATP1B3) of the Na/K-ATPase did not affect FGF2 secretion, suggesting that they are dispensable for this process. These findings indicate that it is not the membrane potential-generating function of the Na/K-ATPase complex but rather a so far unidentified role of potentially unassembled α1-chains that is critical for unconventional secretion of FGF2. Consistently, in the absence of ß-chains, we found a direct interaction between the cytoplasmic domain of ATP1A1 and FGF2 with submicromolar affinity. Based upon these observations, we propose that ATP1A1 is a recruitment factor for FGF2 at the inner leaflet of plasma membranes that may control phosphatidylinositol 4,5-bisphosphate-dependent membrane translocation as part of the unconventional secretory pathway of FGF2.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Via Secretória , ATPase Trocadora de Sódio-Potássio/metabolismo , Células HeLa , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA