Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Metab ; 10(1): 14, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192773

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC), the predominant subtype of kidney cancer, possesses characteristic alterations to multiple metabolic pathways, including the accumulation of cytosolic lipid droplets. However, the pathways that drive lipid droplet accumulation in ccRCC cells and their importance to cancer biology remain poorly understood. METHODS: We sought to identify the carbon sources necessary for lipid droplet accumulation using Oil red O staining and isotope-tracing lipidomics. The role of the acyl-CoA synthetase (ACSL) family members, an important group of lipid metabolic enzymes, was investigated using siRNA and drug mediated inhibition. CTB and XTT assays were performed to determine the effect of ACSL3 knockdown and lipid starvation on ccRCC cell viability and shRNA was used to study the effect of ACSL3 in an orthotopic mouse model. The relationship between ferroptosis susceptibility of ccRCC and ACSL3 controlled lipid metabolism was examined using CTB and FACS-based assays. The importance of 5-LOX in ferroptosis susceptibility in ccRCC was shown with XTT survival assays, and the expression level and predictive value of 5-LOX in TCGA ccRCC data was assessed. RESULTS: We found that ccRCC cells obtain the necessary substrates for lipid droplet accumulation by metabolizing exogenous serum derived lipids and not through de novo lipogenesis. We show that this metabolism of exogenous fatty acids into lipid droplets requires the enzyme acyl-CoA synthetase 3 (ACSL3) and not other ACSL family proteins. Importantly, genetic or pharmacologic suppression of ACSL3 is cytotoxic to ccRCC cells in vitro and causes a reduction of tumor weight in an orthotopic mouse model. Conversely, ACSL3 inhibition decreases the susceptibility of ccRCC cells to ferroptosis, a non-apoptotic form of cell death involving lipid peroxidation. The sensitivity of ccRCC to ferroptosis is also highly dependent on the composition of exogenous fatty acids and on 5-lipoxygenase (5-LOX), a leukotriene producing enzyme which produces lipid peroxides that have been implicated in other cancers but not in ccRCC. CONCLUSIONS: ACSL3 regulates the accumulation of lipid droplets in ccRCC and is essential for tumor growth. In addition, ACSL3 also modulates ferroptosis sensitivity in a manner dependent on the composition of exogenous fatty acids. Both functions of ACSL3 could be exploited for ccRCC therapy.

2.
Nat Commun ; 12(1): 4308, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262028

RESUMO

Hypoxia plays a critical role in tumor progression including invasion and metastasis. To determine critical genes regulated by hypoxia that promote invasion and metastasis, we screen fifty hypoxia inducible genes for their effects on invasion. In this study, we identify v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (MAFF) as a potent regulator of tumor invasion without affecting cell viability. MAFF expression is elevated in metastatic breast cancer patients and is specifically correlated with hypoxic tumors. Combined ChIP- and RNA-sequencing identifies IL11 as a direct transcriptional target of the heterodimer between MAFF and BACH1, which leads to activation of STAT3 signaling. Inhibition of IL11 results in similar levels of metastatic suppression as inhibition of MAFF. This study demonstrates the oncogenic role of MAFF as an activator of the IL11/STAT3 pathways in breast cancer.


Assuntos
Neoplasias da Mama/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-11/metabolismo , Fator de Transcrição MafF/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Hipóxia Celular , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Fator de Transcrição MafF/genética , Camundongos , Invasividade Neoplásica/patologia , Metástase Neoplásica/patologia , Proteínas Nucleares/genética , Prognóstico , Transdução de Sinais , Transcrição Gênica
3.
Nat Biotechnol ; 39(3): 357-367, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077961

RESUMO

Depletion of mitochondrial copper, which shifts metabolism from respiration to glycolysis and reduces energy production, is known to be effective against cancer types that depend on oxidative phosphorylation. However, existing copper chelators are too toxic or ineffective for cancer treatment. Here we develop a safe, mitochondria-targeted, copper-depleting nanoparticle (CDN) and test it against triple-negative breast cancer (TNBC). We show that CDNs decrease oxygen consumption and oxidative phosphorylation, cause a metabolic switch to glycolysis and reduce ATP production in TNBC cells. This energy deficiency, together with compromised mitochondrial membrane potential and elevated oxidative stress, results in apoptosis. CDNs should be less toxic than existing copper chelators because they favorably deprive copper in the mitochondria in cancer cells instead of systemic depletion. Indeed, we demonstrate low toxicity of CDNs in healthy mice. In three mouse models of TNBC, CDN administration inhibits tumor growth and substantially improves survival. The efficacy and safety of CDNs suggest the potential clinical relevance of this approach.


Assuntos
Cobre/metabolismo , Mitocôndrias/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Morte Celular , Linhagem Celular Tumoral , Quelantes/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Fosforilação Oxidativa , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Sens Actuators B Chem ; 3062020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32265579

RESUMO

Hypoxia (pO2 ≤ ~1.5%) is an important characteristic of tumor microenvironments that directly correlates with resistance against first-line therapies and tumor proliferation/infiltration. The ability to accurately identify hypoxic tumor cells/tissue could afford tailored therapeutic regimens for personalized treatment, development of more-effective therapies, and discerning the mechanisms underlying disease progression. Fluorogenic constructs identifying aforesaid cells/tissue operate by targeting the bioreductive activity of primarily nitroreductases (NTRs), but collectively present photophysical and/or physicochemical shortcomings that could limit effectiveness. To overcome these limitations, we present the rational design, development, and evaluation of the first activatable ultracompact xanthene core-based molecular probe (NO 2 -Rosol) for selectively imaging NTR activity that affords an "OFF-ON" near-infrared (NIR) fluorescence response (> 700 nm) alongside a remarkable Stokes shift (> 150 nm) via NTR activity-facilitated modulation to its energetics whose resultant interplay discontinues an intramolecular d-PET fluorescence-quenching mechanism transpiring between directly-linked electronically-uncoupled π-systems comprising its components. DFT calculations guided selection of a suitable fluorogenic scaffold and nitroaromatic moiety candidate that when adjoined could (i) afford such photophysical response upon bioreduction by upregulated NTR activity in hypoxic tumor cells/tissue and (ii) employ a retention mechanism strategy that capitalizes on an inherent physical property of the NIR fluorogenic scaffold for achieving signal amplification. NO 2 -Rosol demonstrated 705 nm NIR fluorescence emission and 157 nm Stokes shift, selectivity for NTR over relevant bioanalytes, and a 28-/12-fold fluorescence enhancement in solution and between cells cultured under different oxic conditions, respectively. In establishing feasibility for NO 2 -Rosol to provide favorable contrast levels in solutio/vitro, we anticipate NO 2 -Rosol doing so in preclinical studies.

5.
Cell Death Dis ; 11(2): 102, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029721

RESUMO

Despite the fact that Otto H. Warburg discovered the Warburg effect almost one hundred years ago, why cancer cells waste most of the glucose carbon as lactate remains an enigma. Warburg proposed a connection between the Warburg effect and cell dedifferentiation. Hypoxia is a common tumor microenvironmental stress that induces the Warburg effect and blocks tumor cell differentiation. The underlying mechanism by which this occurs is poorly understood, and no effective therapeutic strategy has been developed to overcome this resistance to differentiation. Using a neuroblastoma differentiation model, we discovered that hypoxia repressed cell differentiation through reducing cellular acetyl-CoA levels, leading to reduction of global histone acetylation and chromatin accessibility. The metabolic switch triggering this global histone hypoacetylation was the induction of pyruvate dehydrogenase kinases (PDK1 and PDK3). Inhibition of PDKs using dichloroacetate (DCA) restored acetyl-CoA generation and histone acetylation under hypoxia. Knocking down PDK1 induced neuroblastoma cell differentiation, highlighting the critical role of PDK1 in cell fate control. Importantly, acetate or glycerol triacetate (GTA) supplementation restored differentiation markers expression and neuron differentiation under hypoxia. Moreover, ATAC-Seq analysis demonstrated that hypoxia treatment significantly reduced chromatin accessibility at RAR/RXR binding sites, which can be restored by acetate supplementation. In addition, hypoxia-induced histone hypermethylation by increasing 2-hydroxyglutarate (2HG) and reducing α-ketoglutarate (αKG). αKG supplementation reduced histone hypermethylation upon hypoxia, but did not restore histone acetylation or differentiation markers expression. Together, these findings suggest that diverting pyruvate flux away from acetyl-CoA generation to lactate production is the key mechanism that Warburg effect drives dedifferentiation and tumorigenesis. We propose that combining differentiation therapy with acetate/GTA supplementation might represent an effective therapy against neuroblastoma.


Assuntos
Acetatos/farmacologia , Antineoplásicos/farmacologia , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neurogênese/efeitos dos fármacos , Efeito Warburg em Oncologia/efeitos dos fármacos , Acetilação , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Masculino , Camundongos , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Crescimento Neuronal/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Transdução de Sinais , Carga Tumoral/efeitos dos fármacos , Hipóxia Tumoral , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nat Commun ; 9(1): 4590, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389926

RESUMO

Here we introduce Protein-indexed Assay of Transposase Accessible Chromatin with sequencing (Pi-ATAC) that combines single-cell chromatin and proteomic profiling. In conjunction with DNA transposition, the levels of multiple cell surface or intracellular protein epitopes are recorded by index flow cytometry and positions in arrayed microwells, and then subject to molecular barcoding for subsequent pooled analysis. Pi-ATAC simultaneously identifies the epigenomic and proteomic heterogeneity in individual cells. Pi-ATAC reveals a casual link between transcription factor abundance and DNA motif access, and deconvolute cell types and states in the tumor microenvironment in vivo. We identify a dominant role for hypoxia, marked by HIF1α protein, in the tumor microvenvironment for shaping the regulome in a subset of epithelial tumor cells.


Assuntos
DNA/genética , Meio Ambiente , Epigenômica , Epitopos/metabolismo , Proteínas/metabolismo , Análise de Célula Única , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Hipóxia Celular/genética , Linhagem Celular Tumoral , Cromatina/metabolismo , Epigênese Genética , Molécula de Adesão da Célula Epitelial/metabolismo , Linfócitos/metabolismo , Camundongos , Motivos de Nucleotídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Transposases/metabolismo
7.
Nat Cell Biol ; 18(4): 356-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27027486

RESUMO

Low oxygen tension (hypoxia) is a hallmark of cancer that influences cancer cell function, but is also an important component of the tumour microenvironment as it alters the extracellular matrix, modulates the tumour immune response and increases angiogenesis. Here we discuss the regulation and role of hypoxia and its key transcriptional mediators, the hypoxia-inducible factor (HIF) family of transcription factors, in the tumour microenvironment and stromal compartments.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia , Fator 1 Induzível por Hipóxia/genética , Modelos Biológicos , Neoplasias/irrigação sanguínea , Neoplasias/genética , Neovascularização Patológica/genética , Transdução de Sinais/genética , Microambiente Tumoral/genética
8.
Cell Rep ; 12(1): 116-127, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26119730

RESUMO

Long believed to be a byproduct of malignant transformation, reprogramming of cellular metabolism is now recognized as a driving force in tumorigenesis. In clear cell renal cell carcinoma (ccRCC), frequent activation of HIF signaling induces a metabolic switch that promotes tumorigenesis. Here, we demonstrate that PGC-1α, a central regulator of energy metabolism, is suppressed in VHL-deficient ccRCC by a HIF/Dec1-dependent mechanism. In VHL wild-type cells, PGC-1α suppression leads to decreased expression of the mitochondrial transcription factor Tfam and impaired mitochondrial respiration. Conversely, PGC-1α expression in VHL-deficient cells restores mitochondrial function and induces oxidative stress. ccRCC cells expressing PGC-1α exhibit impaired tumor growth and enhanced sensitivity to cytotoxic therapies. In patients, low levels of PGC-1α expression are associated with poor outcome. These studies demonstrate that suppression of PGC-1α recapitulates key metabolic phenotypes of ccRCC and highlight the potential of targeting PGC-1α expression as a therapeutic modality for the treatment of ccRCC.


Assuntos
Carcinogênese/metabolismo , Carcinoma de Células Renais/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição/metabolismo , Animais , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Humanos , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/metabolismo
9.
Genes Dev ; 29(8): 817-31, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25846796

RESUMO

The bone microenvironment is composed of niches that house cells across variable oxygen tensions. However, the contribution of oxygen gradients in regulating bone and blood homeostasis remains unknown. Here, we generated mice with either single or combined genetic inactivation of the critical oxygen-sensing prolyl hydroxylase (PHD) enzymes (PHD1-3) in osteoprogenitors. Hypoxia-inducible factor (HIF) activation associated with Phd2 and Phd3 inactivation drove bone accumulation by modulating osteoblastic/osteoclastic cross-talk through the direct regulation of osteoprotegerin (OPG). In contrast, combined inactivation of Phd1, Phd2, and Phd3 resulted in extreme HIF signaling, leading to polycythemia and excessive bone accumulation by overstimulating angiogenic-osteogenic coupling. We also demonstrate that genetic ablation of Phd2 and Phd3 was sufficient to protect ovariectomized mice against bone loss without disrupting hematopoietic homeostasis. Importantly, we identify OPG as a HIF target gene capable of directing osteoblast-mediated osteoclastogenesis to regulate bone homeostasis. Here, we show that coordinated activation of specific PHD isoforms fine-tunes the osteoblastic response to hypoxia, thereby directing two important aspects of bone physiology: cross-talk between osteoblasts and osteoclasts and angiogenic-osteogenic coupling.


Assuntos
Osso e Ossos/enzimologia , Homeostase , Osteoprotegerina/metabolismo , Oxigênio/metabolismo , Prolil Hidroxilases/genética , Prolil Hidroxilases/metabolismo , Células 3T3 , Animais , Reabsorção Óssea/genética , Osso e Ossos/citologia , Comunicação Celular , Hipóxia Celular/fisiologia , Células Cultivadas , Ativação Enzimática , Feminino , Inativação Gênica , Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Transdução de Sinais/genética , Células-Tronco/enzimologia
10.
Cell Rep ; 10(7): 1096-109, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25704813

RESUMO

The p53 tumor suppressor plays a key role in maintaining cellular integrity. In response to diverse stress signals, p53 can trigger apoptosis to eliminate damaged cells or cell-cycle arrest to enable cells to cope with stress and survive. However, the transcriptional networks underlying p53 pro-survival function are incompletely understood. Here, we show that in oncogenic-Ras-expressing cells, p53 promotes oxidative phosphorylation (OXPHOS) and cell survival upon glucose starvation. Analysis of p53 transcriptional activation domain mutants reveals that these responses depend on p53 transactivation function. Using gene expression profiling and ChIP-seq analysis, we identify several p53-inducible fatty acid metabolism-related genes. One such gene, Acad11, encoding a protein involved in fatty acid oxidation, is required for efficient OXPHOS and cell survival upon glucose starvation. This study provides new mechanistic insight into the pro-survival function of p53 and suggests that targeting this pathway may provide a strategy for therapeutic intervention based on metabolic perturbation.


Assuntos
Acil-CoA Desidrogenase/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acil-CoA Desidrogenase/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Redes Reguladoras de Genes , Glucose/farmacologia , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Estrutura Terciária de Proteína , Interferência de RNA , Alinhamento de Sequência , Estresse Fisiológico , Ativação Transcricional , Transplante Heterólogo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
11.
Proc Natl Acad Sci U S A ; 111(37): 13373-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25187556

RESUMO

Dysregulation of the von Hippel-Lindau/hypoxia-inducible transcription factor (HIF) signaling pathway promotes clear cell renal cell carcinoma (ccRCC) progression and metastasis. The protein kinase GAS6/AXL signaling pathway has recently been implicated as an essential mediator of metastasis and receptor tyrosine kinase crosstalk in cancer. Here we establish a molecular link between HIF stabilization and induction of AXL receptor expression in metastatic ccRCC. We found that HIF-1 and HIF-2 directly activate the expression of AXL by binding to the hypoxia-response element in the AXL proximal promoter. Importantly, genetic and therapeutic inactivation of AXL signaling in metastatic ccRCC cells reversed the invasive and metastatic phenotype in vivo. Furthermore, we define a pathway by which GAS6/AXL signaling uses lateral activation of the met proto-oncogene (MET) through SRC proto-oncogene nonreceptor tyrosine kinase to maximize cellular invasion. Clinically, AXL expression in primary tumors of ccRCC patients correlates with aggressive tumor behavior and patient lethality. These findings provide an alternative model for SRC and MET activation by growth arrest-specific 6 in ccRCC and identify AXL as a therapeutic target driving the aggressive phenotype in renal clear cell carcinoma.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Renais/secundário , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Quinases da Família src/metabolismo , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/secundário , Hipóxia Celular , Linhagem Celular Tumoral , Ativação Enzimática , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Neoplasias Renais/enzimologia , Neoplasias Renais/patologia , Modelos Biológicos , Invasividade Neoplásica , Fenótipo , Proto-Oncogene Mas , Transdução de Sinais , Resultado do Tratamento , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Receptor Tirosina Quinase Axl
13.
J Biol Chem ; 285(3): 1879-87, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19917613

RESUMO

Protein kinase Cdelta (PKCdelta) is an essential component of the intrinsic apoptotic program. Following DNA damage, such as exposure to UV radiation, PKCdelta is cleaved in a caspase-dependent manner, generating a constitutively active catalytic fragment (PKCdelta-cat), which is necessary and sufficient for keratinocyte apoptosis. We found that in addition to inducing apoptosis, expression of PKCdelta-cat caused a pronounced G(2)/M cell cycle arrest in both primary human keratinocytes and immortalized HaCaT cells. Consistent with a G(2)/M arrest, PKCdelta-cat induced phosphorylation of Cdk1 (Tyr(15)), a critical event in the G(2)/M checkpoint. Treatment with the ATM/ATR inhibitor caffeine was unable to prevent PKCdelta-cat-induced G(2)/M arrest, suggesting that PKCdelta-cat is functioning downstream of ATM/ATR in the G(2)/M checkpoint. To better understand the role of PKCdelta and PKCdelta-cat in the cell cycle response to DNA damage, we exposed wild-type and PKCdelta null mouse embryonic fibroblasts (MEFs) to UV radiation. Wild-type MEFs underwent a pronounced G(2)/M arrest, Cdk1 phosphorylation, and induction of apoptosis following UV exposure, whereas PKCdelta null MEFs were resistant to these effects. Expression of PKCdelta-green fluorescent protein, but not caspase-resistant or kinase-inactive PKCdelta, was able to restore G(2)/M checkpoint integrity in PKCdelta null MEFs. The function of PKCdelta in the DNA damage-induced G(2)/M cell cycle checkpoint may be a critical component of its tumor suppressor function.


Assuntos
Domínio Catalítico , Divisão Celular/fisiologia , Dano ao DNA , Fase G2/fisiologia , Proteína Quinase C-delta/química , Proteína Quinase C-delta/metabolismo , Animais , Biocatálise , Divisão Celular/efeitos da radiação , Linhagem Celular , Fase G2/efeitos da radiação , Humanos , Recém-Nascido , Camundongos , Proteína Quinase C-delta/deficiência , Proteína Quinase C-delta/genética , Raios Ultravioleta/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA