Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Adv Radiat Oncol ; 9(2): 101355, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38405315

RESUMO

Purpose: Recurrent or new primary breast cancer requiring comprehensive regional nodal irradiation after prior radiation therapy (RT) to the supraclavicular area and upper axilla is challenging due to cumulative brachial plexus (BP) dose tolerance. We assessed BP dose sparing achieved with pencil beam scanning proton therapy (PBS-PT) and photon volumetric modulated arc therapy (VMAT). Methods and Materials: In an institutional review board-approved planning study, all patients with ipsilateral recurrent breast cancer treated with PBS-PT re-RT (PBT1) with at least partial BP overlap from prior photon RT were identified. Comparative VMAT plans (XRT1) using matched BP dose constraints were developed. A second pair of proton (PBT2) and VMAT (XRT2) plans using standardized target volumes were created, applying uniform prescription dose of 50.4 per 1.8 Gy and a maximum BP constraint <25 Gy. Incidence of brachial plexopathy was also assessed. Results: Ten consecutive patients were identified. Median time between RT courses was 48 months (15-276). Median first, second, and cumulative RT doses were 50.4 Gy (range, 42.6-60.0), 50.4 Gy relative biologic effectiveness (RBE) (45.0-64.4), and 102.4 Gy (RBE) (95.0-120.0), respectively. Median follow-up was 15 months (5-33) and 18 months for living patients (11-33) Mean BP max was 37.5 Gy (RBE) for PBT1 and 36.9 Gy for XRT1. Target volume coverage of V85% (volume receiving 85% of prescription dose), V90%, and V95% were numerically lower for XRT1 versus PBT1. Similarly, axilla I-III and supraclavicular area coverage were significantly higher for PBT2 than XRT2 at dose levels of V55%, V65%, V75%, V85%, and V95%. Only axilla I V55% did not reach significance (P = .06) favoring PBS-PT. Two patients with high cumulative BPmax (95.2 Gy [RBE], 101.6 Gy [RBE]) developed brachial plexopathy symptoms with ulnar nerve distribution neuropathy without pain or weakness (1 of 2 had symptom resolution after 6 months without intervention). Conclusions: PBS-PT improved BP sparing and target volume coverage versus VMAT. For patients requiring comprehensive re-RT for high-risk, nonmetastatic breast cancer recurrence with BP overlap and reasonable expectation for prolonged life expectancy, PBT may be the preferred treatment modality.

2.
Clin Imaging ; 93: 83-85, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36413878

RESUMO

COVID-19 is associated with characteristic lung CT findings. Radiotherapy simulation CT scans may reveal characteristic COVID-19 findings and identify patients with active or prior infection. We reviewed patients undergoing CT simulation at a major cancer center in an early epicenter of the COVID-19 pandemic in the United States. Scans were reviewed by radiation oncologists using established radiographic criteria for COVID-19 pneumonia. Radiographic classifications were compared with available COVID-19 PCR test results. A one-tailed t-test was used to compare the rate of positive COVID-19 tests in radiographically suspicious vs. non-suspicious groups. Scans deemed suspicious were re-reviewed by expert diagnostic radiologists. 414 CT simulation scans were performed on 400 patients. 119 patients had COVID-19 PCR test results available. Radiation oncologists considered 71 scans (17.1%) suspicious for COVID-19. Of these, 23 had corresponding COVID-19 PCR tests, and 3/23 (15.7%) were positive for COVID. 107 non-suspicious scans had corresponding COVID-19 test results, and 9 were positive (8.4%). The difference in positive test results between suspicious and non-suspicious groups was not significant (p = 0.23). Upon re-review by a diagnostic radiologist, 25 (35%) scans deemed suspicious by radiation oncologists were confirmed to meet criteria, while the rest were re-classified as "atypical" for COVID-19. We conclude that radiotherapy simulation CT scans can be reviewed for signs of COVID-19 pneumonia by radiation oncologists. However, suspicious CT simulation was not associated with a higher incidence of COVID infection compared with non-suspicious CT simulation, and there was low concordance between radiation oncologist and diagnostic radiologist classification of scans.


Assuntos
COVID-19 , Humanos , Pandemias , Simulação por Computador , Tomografia Computadorizada por Raios X , Pulmão/diagnóstico por imagem
4.
Glia ; 68(12): 2486-2502, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32621641

RESUMO

Radiation therapy is part of the standard of care for gliomas and kills a subset of tumor cells, while also altering the tumor microenvironment. Tumor cells with stem-like properties preferentially survive radiation and give rise to glioma recurrence. Various techniques for enriching and quantifying cells with stem-like properties have been used, including the fluorescence activated cell sorting (FACS)-based side population (SP) assay, which is a functional assay that enriches for stem-like tumor cells. In these analyses, mouse models of glioma have been used to understand the biology of this disease and therapeutic responses, including the radiation response. We present combined SP analysis and single-cell RNA sequencing of genetically-engineered mouse models of glioma to show a time course of cellular response to radiation. We identify and characterize two distinct tumor cell populations that are inherently radioresistant and also distinct effects of radiation on immune cell populations within the tumor microenvironment.


Assuntos
Neoplasias Encefálicas , Glioma , Células-Tronco , Animais , Neoplasias Encefálicas/radioterapia , Camundongos , Células-Tronco Neoplásicas , Análise de Célula Única , Microambiente Tumoral
5.
Nat Cell Biol ; 21(11): 1403-1412, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685984

RESUMO

The development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells. CEMIP depletion in tumour cells impaired brain metastasis, disrupting invasion and tumour cell association with the brain vasculature, phenotypes rescued by pre-conditioning the brain microenvironment with CEMIP+ exosomes. Moreover, uptake of CEMIP+ exosomes by brain endothelial and microglial cells induced endothelial cell branching and inflammation in the perivascular niche by upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, known to promote brain vascular remodelling and metastasis. CEMIP was elevated in tumour tissues and exosomes from patients with brain metastasis and predicted brain metastasis progression and patient survival. Collectively, our findings suggest that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.


Assuntos
Neoplasias Encefálicas/genética , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , Hialuronoglucosaminidase/genética , Neovascularização Patológica/genética , Microambiente Tumoral/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CCL1/genética , Quimiocina CCL1/metabolismo , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Exossomos/patologia , Humanos , Hialuronoglucosaminidase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Metástase Neoplásica , Neovascularização Patológica/metabolismo , Neovascularização Patológica/mortalidade , Neovascularização Patológica/patologia , Transdução de Sinais , Análise de Sobrevida , Carga Tumoral , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Nature ; 553(7689): 467-472, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29342134

RESUMO

Chromosomal instability is a hallmark of cancer that results from ongoing errors in chromosome segregation during mitosis. Although chromosomal instability is a major driver of tumour evolution, its role in metastasis has not been established. Here we show that chromosomal instability promotes metastasis by sustaining a tumour cell-autonomous response to cytosolic DNA. Errors in chromosome segregation create a preponderance of micronuclei whose rupture spills genomic DNA into the cytosol. This leads to the activation of the cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) cytosolic DNA-sensing pathway and downstream noncanonical NF-κB signalling. Genetic suppression of chromosomal instability markedly delays metastasis even in highly aneuploid tumour models, whereas continuous chromosome segregation errors promote cellular invasion and metastasis in a STING-dependent manner. By subverting lethal epithelial responses to cytosolic DNA, chromosomally unstable tumour cells co-opt chronic activation of innate immune pathways to spread to distant organs.


Assuntos
Instabilidade Cromossômica , Citosol/metabolismo , DNA de Neoplasias/metabolismo , Metástase Neoplásica/genética , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/secundário , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Instabilidade Cromossômica/genética , Segregação de Cromossomos , Citosol/enzimologia , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Camundongos , Micronúcleos com Defeito Cromossômico , NF-kappa B/metabolismo , Nucleotidiltransferases/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Laryngoscope ; 127(2): 377-382, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27438558

RESUMO

OBJECTIVES: To evaluate the sites of nodal failure (NF) of nasopharyngeal carcinoma (NPC) treated with intensity-modulated radiation therapy (IMRT). STUDY DESIGN: Retrospective chart review. METHODS: We reviewed the records of 165 patients with nonmetastatic NPC treated with IMRT between July 1998 and April 2011 at our institution. Recurrent nodes were delineated on imaging and coregistered with the original treatment planning computed tomography. Failures were assessed as in-field, out-field, or marginal based on the relative volumes of the recurrent nodes covered by the original dose distribution. RESULTS: Ten patients had NF at a median follow-up of 70.4 months for surviving patients. The 3- and 5-year overall survival and NF rates were 88.7%, 76.0% and 5.8%, 7.7%, respectively. Six of the nodal failures were in-field, of which five occurred in level II; whereas four had out-field failures, all of which were in the protected parotid gland area. There were no recurrences in level 1b despite this region being protected. The cumulative 3- and 5-year failure rates in the parotid gland area were 2.2% and 3.1%, respectively. Three patients with parotid failure initially had subcentimeter, nonspecific nodules in the same locations of the parotid gland as the recurrent nodes. CONCLUSION: Nodal failure is uncommon after IMRT in NPC. Recurrence in the parotid gland region accounts for all of the out-field failures and 40% of NF in our study. Comprehensive assessment of nodules in or around the parotid gland is therefore a key aspect of treatment planning and follow-up. LEVEL OF EVIDENCE: 4. Laryngoscope, 2016 127:377-382, 2017.


Assuntos
Metástase Linfática/radioterapia , Neoplasias Nasofaríngeas/radioterapia , Recidiva Local de Neoplasia/etiologia , Radioterapia de Intensidade Modulada , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Feminino , Seguimentos , Humanos , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/patologia , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/patologia , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Adulto Jovem
9.
Biol Psychiatry ; 79(5): 362-371, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25193242

RESUMO

BACKGROUND: Abnormal regulation of extracellular signal-regulated kinases 1 and 2 has been implicated in 3,4-dihydroxy-l-phenylalanine (L-DOPA)-induced dyskinesia (LID), a motor complication affecting Parkinson's disease patients subjected to standard pharmacotherapy. We examined the involvement of mitogen- and stress-activated kinase 1 (MSK1), a downstream target of extracellular signal-regulated kinases 1 and 2, and an important regulator of transcription in LID. METHODS: 6-Hydroxydopamine was used to produce a model of Parkinson's disease in MSK1 knockout mice and in ∆FosB- or ∆cJun-overexpressing transgenic mice, which were assessed for LID following long-term L-DOPA administration. Biochemical processes were evaluated by Western blotting or immunofluorescence. Histone H3 phosphorylation was analyzed by chromatin immunoprecipitation followed by promotor-specific quantitative polymerase chain reaction. RESULTS: Genetic inactivation of MSK1 attenuated LID and reduced the phosphorylation of histone H3 at Ser10 in the striatum. Chromatin immunoprecipitation analysis showed that this reduction occurred at the level of the fosB gene promoter. In line with this observation, the accumulation of ∆FosB produced by chronic L-DOPA was reduced in MSK1 knockout. Moreover, inducible overexpression of ∆FosB in striatonigral medium spiny neurons exacerbated dyskinetic behavior, whereas overexpression of ∆cJun, which reduces ∆FosB-dependent transcriptional activation, counteracted LID. CONCLUSIONS: Results indicate that abnormal regulation of MSK1 contributes to the development of LID and to the concomitant increase in striatal ∆FosB, which may occur via increased histone H3 phosphorylation at the fosB promoter. Results also show that accumulation of ∆FosB in striatonigral neurons is causally related to the development of dyskinesia.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Doença de Parkinson/complicações , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , Histonas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neostriado/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Oxidopamina/administração & dosagem , Fosforilação
10.
Nat Neurosci ; 18(3): 415-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25643298

RESUMO

Brain-derived neurotrophic factor (BDNF) has a crucial role in modulating neural and behavioral plasticity to drugs of abuse. We found a persistent downregulation of exon-specific Bdnf expression in the ventral tegmental area (VTA) in response to chronic opiate exposure, which was mediated by specific epigenetic modifications at the corresponding Bdnf gene promoters. Exposure to chronic morphine increased stalling of RNA polymerase II at these Bdnf promoters in VTA and altered permissive and repressive histone modifications and occupancy of their regulatory proteins at the specific promoters. Furthermore, we found that morphine suppressed binding of phospho-CREB (cAMP response element binding protein) to Bdnf promoters in VTA, which resulted from enrichment of trimethylated H3K27 at the promoters, and that decreased NURR1 (nuclear receptor related-1) expression also contributed to Bdnf repression and associated behavioral plasticity to morphine. Our findings suggest previously unknown epigenetic mechanisms of morphine-induced molecular and behavioral neuroadaptations.


Assuntos
Analgésicos Opioides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epigênese Genética/fisiologia , Área Tegmentar Ventral/metabolismo , Analgésicos Opioides/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Cocaína/farmacologia , Condicionamento Operante/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/efeitos dos fármacos , Dependência de Heroína/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Mudanças Depois da Morte , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos
11.
Proc Natl Acad Sci U S A ; 111(14): 5248-53, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706837

RESUMO

Glioblastoma is the most common adult primary brain tumor and has a dismal median survival. Radiation is a mainstay of treatment and significantly improves survival, yet recurrence is nearly inevitable. Better understanding the radiation response of glioblastoma will help improve strategies to treat this devastating disease. Here, we present a comprehensive study of the in vivo radiation response of glioma cells in a mouse model of proneural glioblastoma. These tumors are a heterogeneous mix of cell types with differing radiation sensitivities. To explicitly study the gene expression changes comprising the radiation response of the Olig2(+) tumor bulk cells, we used translating ribosome affinity purification (TRAP) from Olig2-TRAP transgenic mice. Comparing both ribosome-associated and total pools of mRNA isolated from Olig2(+) cells indicated that the in vivo gene expression response to radiation occurs primarily at the total transcript level. Genes related to apoptosis and cell growth were significantly altered. p53 and E2F were implicated as major regulators of the radiation response, with p53 activity needed for the largest gene expression changes after radiation. Additionally, radiation induced a marked shift away from a proneural expression pattern toward a mesenchymal one. This shift occurs in Olig2(+) cells within hours and in multiple genetic backgrounds. Targets for Stat3 and CEBPB, which have been suggested to be master regulators of a mesenchymal shift, were also up-regulated by radiation. These data provide a systematic description of the events following radiation and may be of use in identifying biological processes that promote glioma radioresistance.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Mesoderma/metabolismo , Neurônios/metabolismo , Tolerância a Radiação/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/fisiologia , Animais , Animais Recém-Nascidos , Fatores de Transcrição E2F/fisiologia , Mesoderma/citologia , Camundongos , Camundongos Transgênicos , Neurônios/citologia , RNA Mensageiro/genética , Proteína Supressora de Tumor p53/genética
12.
Cell ; 156(3): 603-616, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485463

RESUMO

Glioblastomas (GBMs) are the most common and malignant primary brain tumors and are aggressively treated with surgery, chemotherapy, and radiotherapy. Despite this treatment, recurrence is inevitable and survival has improved minimally over the last 50 years. Recent studies have suggested that GBMs exhibit both heterogeneity and instability of differentiation states and varying sensitivities of these states to radiation. Here, we employed an iterative combined theoretical and experimental strategy that takes into account tumor cellular heterogeneity and dynamically acquired radioresistance to predict the effectiveness of different radiation schedules. Using this model, we identified two delivery schedules predicted to significantly improve efficacy by taking advantage of the dynamic instability of radioresistance. These schedules led to superior survival in mice. Our interdisciplinary approach may also be applicable to other human cancer types treated with radiotherapy and, hence, may lay the foundation for significantly increasing the effectiveness of a mainstay of oncologic therapy. PAPERCLIP:


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Doses de Radiação , Animais , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Camundongos , Modelos Biológicos
13.
J Neurosci ; 32(30): 10267-72, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22836260

RESUMO

ΔFosB, a Fosb gene product, is induced in nucleus accumbens (NAc) and caudate-putamen (CPu) by repeated exposure to drugs of abuse such as cocaine. This induction contributes to aberrant patterns of gene expression and behavioral abnormalities seen with repeated drug exposure. Here, we assessed whether a remote history of cocaine exposure in rats might alter inducibility of the Fosb gene elicited by subsequent drug exposure. We show that prior chronic cocaine administration, followed by extended withdrawal, increases inducibility of Fosb in NAc, as evidenced by greater acute induction of ΔFosB mRNA and faster accumulation of ΔFosB protein after repeated cocaine reexposure. No such primed Fosb induction was observed in CPu; in fact, subsequent acute induction of ΔFosB mRNA was suppressed in CPu. These abnormal patterns of Fosb expression are associated with chromatin modifications at the Fosb gene promoter. Prior chronic cocaine administration induces a long-lasting increase in RNA polymerase II (Pol II) binding at the Fosb promoter in NAc only, suggesting that Pol II "stalling" primes Fosb for induction in this region upon reexposure to cocaine. A cocaine challenge then triggers the release of Pol II from the gene promoter, allowing for more rapid Fosb transcription. A cocaine challenge also decreases repressive histone modifications at the Fosb promoter in NAc, but increases such repressive marks and decreases activating marks in CPu. These results provide new insight into the chromatin dynamics at the Fosb promoter and reveal a novel mechanism for primed Fosb induction in NAc upon reexposure to cocaine.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Epigênese Genética/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/genética , Animais , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Biol Psychiatry ; 70(5): 408-14, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21679926

RESUMO

BACKGROUND: There has been recent interest in the possibility that epigenetic mechanisms might contribute to the transgenerational transmission of stress-induced vulnerability. Here, we focused on possible paternal transmission with the social defeat stress paradigm. METHODS: Adult male mice exposed to chronic social defeat stress or control nondefeated mice were bred with normal female mice, and their offspring were assessed behaviorally for depressive- and anxiety-like measures. Plasma levels of corticosterone and vascular endothelial growth factor were also assayed. To directly assess the role of epigenetic mechanisms, we used in vitro fertilization (IVF); behavioral assessments were conducted on offspring of mice from IVF-control and IVF-defeated fathers. RESULTS: We show that both male and female offspring from defeated fathers exhibit increased measures of several depression- and anxiety-like behaviors. The male offspring of defeated fathers also display increased baseline plasma levels of corticosterone and decreased levels of vascular endothelial growth factor. However, most of these behavioral changes were not observed when offspring were generated through IVF. CONCLUSIONS: These results suggest that, although behavioral adaptations that occur after chronic social defeat stress can be transmitted from the father to his male and female F1 progeny, only very subtle changes might be transmitted epigenetically under the conditions tested.


Assuntos
Ansiedade/psicologia , Depressão/psicologia , Pai/psicologia , Estresse Psicológico/psicologia , Animais , Ansiedade/sangue , Corticosterona/sangue , Depressão/sangue , Modelos Animais de Doenças , Relações Pai-Filho , Feminino , Fertilização in vitro/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Estresse Psicológico/metabolismo , Fator A de Crescimento do Endotélio Vascular/sangue
15.
J Neurosci ; 30(43): 14585-92, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20980616

RESUMO

The molecular mechanisms underlying stress- and drug-induced neuronal adaptations are incompletely understood. One molecule implicated in such adaptations is ΔFosB, a transcription factor that accumulates in the rodent nucleus accumbens (NAc), a key brain reward region, in response to either chronic stress or repeated exposure to drugs of abuse. The upstream transcriptional mechanisms controlling ΔFosB induction by these environmental stimuli remain elusive. Here, we identify the activity-dependent transcription factor, serum response factor (SRF), as a novel upstream mediator of stress-, but not cocaine-, induced ΔFosB. SRF is downregulated in NAc of both depressed human patients and in mice chronically exposed to social defeat stress. This downregulation of SRF is absent in resilient animals. Through the use of inducible mutagenesis, we show that stress-mediated induction of ΔFosB, which occurs predominantly in resilient mice, is dependent on SRF expression in this brain region. Furthermore, NAc-specific genetic deletion of SRF promotes a variety of prodepressant- and proanxiety-like phenotypes and renders animals more sensitive to the deleterious effects of chronic stress. In contrast, we demonstrate that SRF does not play a role in ΔFosB accumulation in NAc in response to chronic cocaine exposure. Furthermore, NAc-specific knock-out of SRF has no effect on cocaine-induced behaviors, indicating that chronic social defeat stress and repeated cocaine exposure regulate ΔFosB accumulation and behavioral sensitivity through independent mechanisms.


Assuntos
Proteínas Proto-Oncogênicas c-fos/fisiologia , Resiliência Psicológica/efeitos dos fármacos , Fator de Resposta Sérica/fisiologia , Meio Social , Estresse Psicológico/psicologia , Adulto , Idoso , Animais , Antidepressivos/sangue , Ansiedade/metabolismo , Ansiedade/psicologia , Western Blotting , Cocaína/farmacologia , Depressão/metabolismo , Depressão/psicologia , Feminino , Desamparo Aprendido , Humanos , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Resposta Sérica/genética , Comportamento Social
16.
Nat Neurosci ; 13(6): 745-52, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473292

RESUMO

In contrast with the many studies of stress effects on the brain, relatively little is known about the molecular mechanisms of resilience, the ability of some individuals to escape the deleterious effects of stress. We found that the transcription factor DeltaFosB mediates an essential mechanism of resilience in mice. Induction of DeltaFosB in the nucleus accumbens, an important brain reward-associated region, in response to chronic social defeat stress was both necessary and sufficient for resilience. DeltaFosB induction was also required for the standard antidepressant fluoxetine to reverse behavioral pathology induced by social defeat. DeltaFosB produced these effects through induction of the GluR2 AMPA glutamate receptor subunit, which decreased the responsiveness of nucleus accumbens neurons to glutamate, and through other synaptic proteins. Together, these findings establish a previously unknown molecular pathway underlying both resilience and antidepressant action.


Assuntos
Antidepressivos/farmacologia , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resiliência Psicológica , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Animais , Doença Crônica , Dominação-Subordinação , Fluoxetina/farmacologia , Ácido Glutâmico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Receptores de AMPA/metabolismo , Recompensa , Transdução de Sinais , Resultado do Tratamento
17.
Science ; 327(5962): 213-6, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20056891

RESUMO

Cocaine-induced alterations in gene expression cause changes in neuronal morphology and behavior that may underlie cocaine addiction. In mice, we identified an essential role for histone 3 lysine 9 (H3K9) dimethylation and the lysine dimethyltransferase G9a in cocaine-induced structural and behavioral plasticity. Repeated cocaine administration reduced global levels of H3K9 dimethylation in the nucleus accumbens. This reduction in histone methylation was mediated through the repression of G9a in this brain region, which was regulated by the cocaine-induced transcription factor DeltaFosB. Using conditional mutagenesis and viral-mediated gene transfer, we found that G9a down-regulation increased the dendritic spine plasticity of nucleus accumbens neurons and enhanced the preference for cocaine, thereby establishing a crucial role for histone methylation in the long-term actions of cocaine.


Assuntos
Comportamento Animal/efeitos dos fármacos , Cocaína/administração & dosagem , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Plasticidade Neuronal , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/etiologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Espinhas Dendríticas/fisiologia , Regulação para Baixo , Repressão Enzimática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Lisina/metabolismo , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Recompensa , Autoadministração , Transcrição Gênica
18.
Neuron ; 62(3): 335-48, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19447090

RESUMO

Changes in gene expression contribute to the long-lasting regulation of the brain's reward circuitry seen in drug addiction; however, the specific genes regulated and the transcriptional mechanisms underlying such regulation remain poorly understood. Here, we used chromatin immunoprecipitation coupled with promoter microarray analysis to characterize genome-wide chromatin changes in the mouse nucleus accumbens, a crucial brain reward region, after repeated cocaine administration. Our findings reveal several interesting principles of gene regulation by cocaine and of the role of DeltaFosB and CREB, two prominent cocaine-induced transcription factors, in this brain region. The findings also provide comprehensive insight into the molecular pathways regulated by cocaine-including a new role for sirtuins (Sirt1 and Sirt2)-which are induced in the nucleus accumbens by cocaine and, in turn, dramatically enhance the behavioral effects of the drug.


Assuntos
Cromatina/efeitos dos fármacos , Cocaína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Sirtuínas/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Retroalimentação Fisiológica/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/fisiologia , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Reforço Psicológico , Transdução de Sinais/efeitos dos fármacos , Sirtuínas/efeitos dos fármacos
19.
Pharmacol Biochem Behav ; 93(3): 278-84, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19135469

RESUMO

The effects of addictive drugs change with repeated use: many individuals become tolerant of their pleasurable effects but also more sensitive to negative sequelae (e.g., anxiety, paranoia, and drug craving). Understanding the mechanisms underlying such tolerance and sensitization may provide valuable insight into the basis of drug dependency and addiction. We have recently shown that chronic cocaine administration reduces the ability of an acute injection of cocaine to affect impulsivity in rats. However, animals become more impulsive during withdrawal from cocaine self-administration. We have also shown that chronic administration of cocaine increases expression of the transcription factor DeltaFosB in the orbitofrontal cortex (OFC). Mimicking this drug-induced elevation in OFC DeltaFosB through viral-mediated gene transfer mimics these behavioural changes: DeltaFosB over-expression in OFC induces tolerance to the effects of an acute cocaine challenge but sensitizes rats to the cognitive sequelae of withdrawal. Here we report novel data demonstrating that increasing DeltaFosB in the OFC also sensitizes animals to the locomotor-stimulant properties of cocaine. Analysis of nucleus accumbens tissue taken from rats over-expressing DeltaFosB in the OFC and treated chronically with saline or cocaine does not provide support for the hypothesis that increasing OFC DeltaFosB potentiates sensitization via the nucleus accumbens. These data suggest that both tolerance and sensitization to cocaine's many effects, although seemingly opposing processes, can be induced in parallel via the same biological mechanism within the same brain region, and that drug-induced changes in gene expression within the OFC play an important role in multiple aspects of addiction.


Assuntos
Cocaína , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Inibidores da Captação de Dopamina , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Expressão Gênica/efeitos dos fármacos , Masculino , Neostriado/efeitos dos fármacos , Neostriado/fisiologia , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Ratos Long-Evans , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
J Neurosci ; 27(39): 10497-507, 2007 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-17898221

RESUMO

Current cocaine users show little evidence of cognitive impairment and may perform better when using cocaine, yet withdrawal from prolonged cocaine use unmasks dramatic cognitive deficits. It has been suggested that such impairments arise in part through drug-induced dysfunction within the orbitofrontal cortex (OFC), yet the neurobiological mechanisms remain unknown. We observed that chronic cocaine self-administration increased expression of the transcription factor deltaFosB within both medial and orbitofrontal regions of the rat prefrontal cortex. However, the increase in OFC deltaFosB levels was more pronounced after self-administered rather than experimenter-administered cocaine, a pattern that was not observed in other regions. We then used rodent tests of attention and decision making to determine whether deltaFosB within the OFC contributes to drug-induced alterations in cognition. Chronic cocaine treatment produced tolerance to the cognitive impairments caused by acute cocaine. Overexpression of a dominant-negative antagonist of deltaFosB, deltaJunD, in the OFC prevented this behavioral adaptation, whereas locally overexpressing deltaFosB mimicked the effects of chronic cocaine. Gene microarray analyses identified potential molecular mechanisms underlying this behavioral change, including an increase in transcription of metabotropic glutamate receptor subunit 5 and GABA(A) receptors as well as substance P. Identification of deltaFosB in the OFC as a mediator of tolerance to the effects of cocaine on cognition provides fundamentally new insight into the transcriptional modifications associated with addiction.


Assuntos
Estimulantes do Sistema Nervoso Central/administração & dosagem , Cocaína/administração & dosagem , Transtornos Cognitivos/fisiopatologia , Tolerância a Medicamentos/fisiologia , Lobo Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/biossíntese , Animais , Estimulantes do Sistema Nervoso Central/efeitos adversos , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/efeitos adversos , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/etiologia , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Transtornos Cognitivos/induzido quimicamente , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Transferência de Genes , Masculino , Testes Neuropsicológicos , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA