Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
2.
Pathol Res Pract ; 256: 155239, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461692

RESUMO

BACKGROUND: Vasculature plays a crucial role in the progression of prostate cancer (PC). Changes to the prostatic native vessels have not been studied since 2000 when Garcia et al. demonstrated marked media hypercellularity and increased artery thickness in prostatic native arteries within PC. We aim to further evaluate and characterize prostatic native vessels with a more accurate method with the use of virtual slides and digital analysis. DESIGN: Pathologist-annotated whole-mount digital slides from 96 entirely submitted prostatectomies were annotated for PC (color-coded by Gleason) using Omero platform. A subset of 44 cases met criteria for further analysis of media thickness, cellularity, and wall thickness to lumen ratio. Cases were included based on containing ≥5 native arteries (≥100 µm diameter) encased on at least 3 sides by PC, with vessels (≥100 µm diameter) designated as controls if they were ≥ 1000 µm away from PC. Annotated vessels were segmented and processed using Matlab 2023b. Mean media thickness (corrected for oblique sections), media: lumen ratio (based on numbers of pixels), and media cellularity (nuclei count) were studied by analysis with SPSS by linear mixed model with nested random effects for subject and slide to account for repeated measures. RESULTS: Vessels encased by PC showed greater media thickness (p=0.02), cellularity (p=0.02) and wall thickness/lumen ratio (p= <0.001) compared to vessels away from PC. These values showed an increasing trend according to stage in cellularity (p=0.14), media thickness (p=0.12) and wall thickness/ lumen ratio (p= 0.33) with higher stage (pT3). A Gleason group comparison showed a borderline-significant gradewise trend when analyzing wall thickness/lumen ratio (p=0.06). Grade 5 emerged as significantly different (p=0.02) from grades 3 or 4 non-cribriform. CONCLUSIONS: Similar to the 2000 study, increased media thickness and hypercellularity of vessels encased by PC were evident compared to controls. Borderline grade-dependent increased vessel cellularity changes were seen, suggesting a possible role in PC progression; the predictive value of these changes for outcome is uncertain. Whether the etiology of changes reflects locally increased intravascular pressure of vessels within tumor should be investigated.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Próstata/patologia , Processamento de Imagem Assistida por Computador , Prostatectomia , Núcleo Celular/patologia
3.
Neurosurgery ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501824

RESUMO

BACKGROUND AND OBJECTIVES: This study identified a clinically significant subset of patients with glioma with tumor outside of contrast enhancement present at autopsy and subsequently developed a method for detecting nonenhancing tumor using radio-pathomic mapping. We tested the hypothesis that autopsy-based radio-pathomic tumor probability maps would be able to noninvasively identify areas of infiltrative tumor beyond traditional imaging signatures. METHODS: A total of 159 tissue samples from 65 subjects were aligned to MRI acquired nearest to death for this retrospective study. Demographic and survival characteristics for patients with and without tumor beyond the contrast-enhancing margin were computed. An ensemble algorithm was used to predict pixelwise tumor presence from pathological annotations using segmented cellularity (Cell), extracellular fluid, and cytoplasm density as input (6 train/3 test subjects). A second level of ensemble algorithms was used to predict voxelwise Cell, extracellular fluid, and cytoplasm on the full data set (43 train/22 test subjects) using 5-by-5 voxel tiles from T1, T1 + C, fluid-attenuated inversion recovery, and apparent diffusion coefficient as input. The models were then combined to generate noninvasive whole brain maps of tumor probability. RESULTS: Tumor outside of contrast was identified in 41.5% of patients, who showed worse survival outcomes (hazard ratio = 3.90, P < .001). Tumor probability maps reliably tracked nonenhancing tumor on a range of local and external unseen data, identifying tumor outside of contrast in 69% of presurgical cases that also showed reduced survival outcomes (hazard ratio = 1.67, P = .027). CONCLUSION: This study developed a multistage model for mapping gliomas using autopsy tissue samples as ground truth, which was able to identify regions of tumor beyond traditional imaging signatures.

4.
J Neurooncol ; 167(2): 233-241, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372901

RESUMO

BACKGROUND: Autopsy-based radio-pathomic maps of glioma pathology have shown substantial promise inidentifying areas of non-enhancing tumor presence, which may be able to differentiate subsets of patients that respond favorably to treatments such as bevacizumab that have shown mixed efficacy evidence. We tested the hypthesis that phenotypes of non-enhancing tumor fronts can distinguish between glioblastoma patients that will respond favorably to bevacizumab and will visually capture treatment response. METHODS: T1, T1C, FLAIR, and ADC images were used to generate radio-pathomic maps of tumor characteristics for 79 pre-treatment patients with a primary GBM or high-grade IDH1-mutant astrocytoma for this study. Novel phenotyping (hypercellular, hypocellular, hybrid, or well-circumscribed front) of the non-enhancing tumor front was performed on each case. Kaplan Meier analyses were then used to assess differences in survival and bevacizumab efficacy between phenotypes. Phenotype compartment segmentations generated longitudinally for a subset of 26 patients over the course of bevacizumab treatment, where a mixed effect model was used to detect longitudinal changes. RESULTS: Well-Circumscribed patients showed significant/trending increases in survival compared to Hypercellular Front (HR = 2.0, p = 0.05), Hypocellular Front (HR = 2.02, p = 0.03), and Hybrid Front tumors (HR = 1.75, p = 0.09). Only patients with hypocellular or hybrid fronts showed significant survival benefits from bevacizumab treatment (HR = 2.35, p = 0.02; and HR = 2.45, p = 0.03, respectively). Hypocellular volumes decreased by an average 50.52 mm3 per day of bevacizumab treatment (p = 0.002). CONCLUSION: Patients with a hypocellular tumor front identified by radio-pathomic maps showed improved treatment efficacy when treated with bevacizumab, and reducing hypocellular volumes over the course of treatment may indicate treatment response.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Humanos , Bevacizumab/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Recidiva Local de Neoplasia/patologia , Imageamento por Ressonância Magnética/métodos
5.
Res Sq ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260400

RESUMO

Background: Autopsy-based radio-pathomic maps of glioma pathology have shown substantial promise inidentifying areas of non-enhancing tumor presence, which may be able to differentiate subsets of patients that respond favorably to treatments such as bevacizumab that have shown mixed efficacy evidence. We tested the hypthesis that phenotypes of non-enhancing tumor fronts can distinguish between glioblastoma patients that will respond favorably to bevacizumab and will visually capture treatment response. Methods: T1, T1C, FLAIR, and ADC images were used to generate radio-pathomic maps of tumor characteristics for 79 pre-treatment patients with a primary GBM or high-grade IDH1-mutant astrocytoma for this study. Novel phenotyping (hypercellular, hypocellular, hybrid, or well-circumscribed front) of the non-enhancing tumor front was performed on each case. Kaplan Meier analyses were then used to assess differences in survival and bevacizumab efficacy between phenotypes. Phenotype compartment segmentations generated longitudinally for a subset of 26 patients over the course of bevacizumab treatment, where a mixed effect model was used to detect longitudinal changes. Results: Well-Circumscribed patients showed significant/trending increases in survival compared to Hypercellular Front (HR = 2.0, p = 0.05), Hypocellular Front (HR = 2.02, p = 0.03), and Hybrid Front tumors (HR = 1.75, p = 0.09). Only patients with hypocellular or hybrid fronts showed significant survival benefits from bevacizumab treatment (HR = 2.35, p = 0.02; and HR = 2.45, p = 0.03, respectively). Hypocellular volumes decreased by an average 50.52 mm3 per day of bevacizumab treatment (p = 0.002). Conclusion: Patients with a hypocellular tumor front identified by radio-pathomic maps showed improved treatment efficacy when treated with bevacizumab, and reducing hypocellular volumes over the course of treatment may indicate treatment response.

6.
Magn Reson Med ; 91(5): 1803-1821, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38115695

RESUMO

PURPOSE: K trans $$ {K}^{\mathrm{trans}} $$ has often been proposed as a quantitative imaging biomarker for diagnosis, prognosis, and treatment response assessment for various tumors. None of the many software tools for K trans $$ {K}^{\mathrm{trans}} $$ quantification are standardized. The ISMRM Open Science Initiative for Perfusion Imaging-Dynamic Contrast-Enhanced (OSIPI-DCE) challenge was designed to benchmark methods to better help the efforts to standardize K trans $$ {K}^{\mathrm{trans}} $$ measurement. METHODS: A framework was created to evaluate K trans $$ {K}^{\mathrm{trans}} $$ values produced by DCE-MRI analysis pipelines to enable benchmarking. The perfusion MRI community was invited to apply their pipelines for K trans $$ {K}^{\mathrm{trans}} $$ quantification in glioblastoma from clinical and synthetic patients. Submissions were required to include the entrants' K trans $$ {K}^{\mathrm{trans}} $$ values, the applied software, and a standard operating procedure. These were evaluated using the proposed OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score defined with accuracy, repeatability, and reproducibility components. RESULTS: Across the 10 received submissions, the OSIP I gold $$ \mathrm{OSIP}{\mathrm{I}}_{\mathrm{gold}} $$ score ranged from 28% to 78% with a 59% median. The accuracy, repeatability, and reproducibility scores ranged from 0.54 to 0.92, 0.64 to 0.86, and 0.65 to 1.00, respectively (0-1 = lowest-highest). Manual arterial input function selection markedly affected the reproducibility and showed greater variability in K trans $$ {K}^{\mathrm{trans}} $$ analysis than automated methods. Furthermore, provision of a detailed standard operating procedure was critical for higher reproducibility. CONCLUSIONS: This study reports results from the OSIPI-DCE challenge and highlights the high inter-software variability within K trans $$ {K}^{\mathrm{trans}} $$ estimation, providing a framework for ongoing benchmarking against the scores presented. Through this challenge, the participating teams were ranked based on the performance of their software tools in the particular setting of this challenge. In a real-world clinical setting, many of these tools may perform differently with different benchmarking methodology.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Software , Algoritmos
7.
Tomography ; 9(6): 2052-2066, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37987347

RESUMO

There is a need to develop user-friendly imaging tools estimating robust quantitative biomarkers (QIBs) from multiparametric (mp)MRI for clinical applications in oncology. Quantitative metrics derived from (mp)MRI can monitor and predict early responses to treatment, often prior to anatomical changes. We have developed a vendor-agnostic, flexible, and user-friendly MATLAB-based toolkit, MRI-Quantitative Analysis and Multiparametric Evaluation Routines ("MRI-QAMPER", current release v3.0), for the estimation of quantitative metrics from dynamic contrast-enhanced (DCE) and multi-b value diffusion-weighted (DW) MR and MR relaxometry. MRI-QAMPER's functionality includes generating numerical parametric maps from these methods reflecting tumor permeability, cellularity, and tissue morphology. MRI-QAMPER routines were validated using digital reference objects (DROs) for DCE and DW MRI, serving as initial approval stages in the National Cancer Institute Quantitative Imaging Network (NCI/QIN) software benchmark. MRI-QAMPER has participated in DCE and DW MRI Collaborative Challenge Projects (CCPs), which are key technical stages in the NCI/QIN benchmark. In a DCE CCP, QAMPER presented the best repeatability coefficient (RC = 0.56) across test-retest brain metastasis data, out of ten participating DCE software packages. In a DW CCP, QAMPER ranked among the top five (out of fourteen) tools with the highest area under the curve (AUC) for prostate cancer detection. This platform can seamlessly process mpMRI data from brain, head and neck, thyroid, prostate, pancreas, and bladder cancer. MRI-QAMPER prospectively analyzes dose de-escalation trial data for oropharyngeal cancer, which has earned it advanced NCI/QIN approval for expanded usage and applications in wider clinical trials.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Masculino , Humanos , Meios de Contraste , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Oncologia , Biomarcadores
8.
Lab Invest ; 103(12): 100269, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37898290

RESUMO

Prostate cancer is the most commonly diagnosed cancer in men, accounting for 27% of the new male cancer diagnoses in 2022. If organ-confined, removal of the prostate through radical prostatectomy is considered curative; however, distant metastases may occur, resulting in a poor patient prognosis. This study sought to determine whether quantitative pathomic features of prostate cancer differ in patients who biochemically experience biological recurrence after surgery. Whole-mount prostate histology from 78 patients was analyzed for this study. In total, 614 slides were hematoxylin and eosin stained and digitized to produce whole slide images (WSI). Regions of differing Gleason patterns were digitally annotated by a genitourinary fellowship-trained pathologist, and high-resolution tiles were extracted from each annotated region of interest for further analysis. Individual glands within the prostate were identified using automated image processing algorithms, and histomorphometric features were calculated on a per-tile basis and across WSI and averaged by patients. Tiles were organized into cancer and benign tissues. Logistic regression models were fit to assess the predictive value of the calculated pathomic features across tile groups and WSI; additionally, models using clinical information were used for comparisons. Logistic regression classified each pathomic feature model at accuracies >80% with areas under the curve of 0.82, 0.76, 0.75, and 0.72 for all tiles, cancer only, noncancer only, and across WSI. This was comparable with standard clinical information, Gleason Grade Groups, and CAPRA score, which achieved similar accuracies but areas under the curve of 0.80, 0.77, and 0.70, respectively. This study demonstrates that the use of quantitative pathomic features calculated from digital histology of prostate cancer may provide clinicians with additional information beyond the traditional qualitative pathologist assessment. Further research is warranted to determine possible inclusion in treatment guidance.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Prostatectomia/métodos , Próstata/cirurgia , Próstata/patologia , Gradação de Tumores , Processamento de Imagem Assistida por Computador
9.
Cancers (Basel) ; 15(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37760407

RESUMO

Prostate cancer (PCa) is the most diagnosed non-cutaneous cancer in men. Despite therapies such as radical prostatectomy, which is considered curative, distant metastases may form, resulting in biochemical recurrence (BCR). This study used radiomic features calculated from multi-parametric magnetic resonance imaging (MP-MRI) to evaluate their ability to predict BCR and PCa presence. Data from a total of 279 patients, of which 46 experienced BCR, undergoing MP-MRI prior to surgery were assessed for this study. After surgery, the prostate was sectioned using patient-specific 3D-printed slicing jigs modeled using the T2-weighted imaging (T2WI). Sectioned tissue was stained, digitized, and annotated by a GU-fellowship trained pathologist for cancer presence. Digitized slides and annotations were co-registered to the T2WI and radiomic features were calculated across the whole prostate and cancerous lesions. A tree regression model was fitted to assess the ability of radiomic features to predict BCR, and a tree classification model was fitted with the same radiomic features to classify regions of cancer. We found that 10 radiomic features predicted eventual BCR with an AUC of 0.97 and classified cancer at an accuracy of 89.9%. This study showcases the application of a radiomic feature-based tool to screen for the presence of prostate cancer and assess patient prognosis, as determined by biochemical recurrence.

10.
J Pathol Inform ; 14: 100321, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37496560

RESUMO

Purpose: Digital pathology is becoming an increasingly popular area of advancement in both research and clinically. Pathologists are now able to manage and interpret slides digitally, as well as collaborate with external pathologists with digital copies of slides. Differences in slide scanners include variation in resolution, image contrast, and optical properties, which may influence downstream image processing. This study tested the hypothesis that varying slide scanners would result in differences in computed pathomic features on prostate cancer whole mount slides. Design: This study collected 192 unique tissue slides from 30 patients following prostatectomy. Tissue samples were paraffin-embedded, stained for hematoxylin and eosin (H&E), and digitized using 3 different scanning microscopes at the highest available magnification rate, for a total of 3 digitized slides per tissue slide. These scanners included a (S1) Nikon microscope equipped with an automated sliding stage, an (S2) Olympus VS120 slide scanner, and a (S3) Huron TissueScope LE scanner. A color deconvolution algorithm was then used to optimize contrast by projecting the RGB image into color channels representing optical stain density. The resulting intensity standardized images were then computationally processed to segment tissue and calculate pathomic features including lumen, stroma, epithelium, and epithelial cell density, as well as second-order features including lumen area and roundness; epithelial area, roundness, and wall thickness; and cell fraction. For each tested feature, mean values of that feature per digitized slide were collected and compared across slide scanners using mixed effect models, fit to compare differences in the tested feature associated with all slide scanners for each slide, including a random effect of subject with a nested random effect of slide to account for repeated measures. Similar models were also computed for tissue densities to examine how differences in scanner impact downstream processing. Results: Each mean color channel intensity (i.e., Red, Green, Blue) differed between slide scanners (all P<.001). Of the color deconvolved images, only the hematoxylin channel was similar in all 3 scanners (all P>.05). Lumen and stroma densities between S3 and S1 slides, and epithelial cell density between S3 and S2 (P>.05) were comparable but all other comparisons were significantly different (P<.05). The second-order features were found to be comparable for all scanner comparisons, except for lumen area and epithelium area. Conclusion: This study demonstrates that both optical and computed properties of digitized histological samples are impacted by slide scanner differences. Future research is warranted to better understand which scanner properties influence the tissue segmentation process and to develop harmonization techniques for comparing data across multiple slide scanners.

11.
PLoS One ; 18(3): e0278084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928230

RESUMO

One in eight men will be affected by prostate cancer (PCa) in their lives. While the current clinical standard prognostic marker for PCa is the Gleason score, it is subject to inter-reviewer variability. This study compares two machine learning methods for discriminating between cancerous regions on digitized histology from 47 PCa patients. Whole-slide images were annotated by a GU fellowship-trained pathologist for each Gleason pattern. High-resolution tiles were extracted from annotated and unlabeled tissue. Patients were separated into a training set of 31 patients (Cohort A, n = 9345 tiles) and a testing cohort of 16 patients (Cohort B, n = 4375 tiles). Tiles from Cohort A were used to train a ResNet model, and glands from these tiles were segmented to calculate pathomic features to train a bagged ensemble model to discriminate tumors as (1) cancer and noncancer, (2) high- and low-grade cancer from noncancer, and (3) all Gleason patterns. The outputs of these models were compared to ground-truth pathologist annotations. The ensemble and ResNet models had overall accuracies of 89% and 88%, respectively, at predicting cancer from noncancer. The ResNet model was additionally able to differentiate Gleason patterns on data from Cohort B while the ensemble model was not. Our results suggest that quantitative pathomic features calculated from PCa histology can distinguish regions of cancer; however, texture features captured by deep learning frameworks better differentiate unique Gleason patterns.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Neoplasias da Próstata/patologia , Aprendizado de Máquina , Prognóstico , Gradação de Tumores
12.
J Comput Assist Tomogr ; 46(4): 604-611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35483100

RESUMO

OBJECTIVE: The aim of this study was to evaluate image quality in vascular and oncologic dual-energy computed tomography (CT) imaging studies performed with a deep learning (DL)-based image reconstruction algorithm in patients with body mass index of ≥30. METHODS: Vascular and multiphase oncologic staging dual-energy CT examinations were evaluated. Two image reconstruction algorithms were applied to the dual-energy CT data sets: standard of care Adaptive Statistical Iterative Reconstruction (ASiR-V) and TrueFidelity DL image reconstruction at 2 levels (medium and high). Subjective quality criteria were independently evaluated by 4 abdominal radiologists, and interreader agreement was assessed. Signal-to-noise ratio (SNR) and contrast-to-noise ratio were compared between image reconstruction methods. RESULTS: Forty-eight patients were included in this study, and the mean patient body mass index was 39.5 (SD, 7.36). TrueFidelity-High (DL-High) and TrueFidelity-Medium (DL-Med) image reconstructions showed statistically significant higher Likert scores compared with ASiR-V across all subjective image quality criteria ( P < 0.001 for DL-High vs ASiR-V; P < 0.05 for DL-Med vs ASiR-V), and SNRs for aorta and liver were significantly higher for DL-High versus ASiR-V ( P < 0.001). Contrast-to-noise ratio for aorta and SNR for aorta and liver were significantly higher for DL-Med versus ASiR-V ( P < 0.05). CONCLUSIONS: TrueFidelity DL image reconstruction provides improved image quality compared with ASiR-V in dual-energy CTs obtained in obese patients.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Radiográfica Assistida por Computador , Abdome/diagnóstico por imagem , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Obesidade/complicações , Obesidade/diagnóstico por imagem , Pelve/diagnóstico por imagem , Doses de Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
13.
Tomography ; 8(2): 635-643, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35314630

RESUMO

The presence and extent of cribriform patterned Gleason 4 (G4) glands are associated with poor prognosis following radical prostatectomy. This study used whole-mount prostate histology and multiparametric magnetic resonance imaging (MP-MRI) to evaluate diffusion differences in G4 gland morphology. Fourty-eight patients underwent MP-MRI prior to prostatectomy, of whom 22 patients had regions of both G4 cribriform glands and G4 fused glands (G4CG and G4FG, respectively). After surgery, the prostate was sliced using custom, patient-specific 3D-printed slicing jigs modeled according to the T2-weighted MR image, processed, and embedded in paraffin. Whole-mount hematoxylin and eosin-stained slides were annotated by our urologic pathologist and digitally contoured to differentiate the lumen, epithelium, and stroma. Digitized slides were co-registered to the T2-weighted MRI scan. Linear mixed models were fitted to the MP-MRI data to consider the different hierarchical structures at the patient and slide level. We found that Gleason 4 cribriform glands were more diffusion-restricted than fused glands.


Assuntos
Próstata , Neoplasias da Próstata , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata/diagnóstico por imagem , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Glândulas Seminais/patologia
14.
Cancers (Basel) ; 14(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35326634

RESUMO

The high-level relationships that form complex networks within tumors and between surrounding tissue is challenging and not fully understood. To better understand these tumoral networks, we developed a tumor connectomics framework (TCF) based on graph theory with machine learning to model the complex interactions within and around the tumor microenvironment that are detectable on imaging. The TCF characterization model was tested with independent datasets of breast, brain, and prostate lesions with corresponding validation datasets in breast and brain cancer. The TCF network connections were modeled using graph metrics of centrality, average path length (APL), and clustering from multiparametric MRI with IsoSVM. The Matthews Correlation Coefficient (MCC), Area Under the Curve-ROC, and Precision-Recall (AUC-ROC and AUC-PR) were used for statistical analysis. The TCF classified the breast and brain tumor cohorts with an IsoSVM AUC-PR and MCC of 0.86, 0.63 and 0.85, 0.65, respectively. The TCF benign breast lesions had a significantly higher clustering coefficient and degree centrality than malignant TCFs. Grade 2 brain tumors demonstrated higher connectivity compared to Grade 4 tumors with increased degree centrality and clustering coefficients. Gleason 7 prostate lesions had increased betweenness centrality and APL compared to Gleason 6 lesions with AUC-PR and MCC ranging from 0.90 to 0.99 and 0.73 to 0.87, respectively. These TCF findings were similar in the validation breast and brain datasets. In conclusion, we present a new method for tumor characterization and visualization that results in a better understanding of the global and regional connections within the lesion and surrounding tissue.

15.
J Magn Reson Imaging ; 55(6): 1745-1758, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34767682

RESUMO

BACKGROUND: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty-three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence. ASSESSMENT: Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Assuntos
Imagem de Difusão por Ressonância Magnética , Neoplasias da Próstata , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Masculino , Estudos Prospectivos , Neoplasias da Próstata/diagnóstico por imagem , Curva ROC , Estudos Retrospectivos , Sensibilidade e Especificidade
16.
Magn Reson Med ; 87(4): 2053-2062, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34775621

RESUMO

PURPOSE: To demonstrate a method for quantification of impeded diffusion fraction (IDF) using conventional clinical DWI protocols. METHODS: The IDF formalism is introduced to quantify contribution from water coordinated by macromolecules to DWI voxel signal based on fundamentally different diffusion constants in vascular capillary, bulk free, and coordinated water compartments. IDF accuracy was studied as a function of b-value set. The IDF scaling with restricted compartment size and polyvinylpirrolidone (PVP) macromolecule concentration was compared to conventional apparent diffusion coefficient (ADC) and isotropic kurtosis model parameters for a diffusion phantom. An in vivo application was demonstrated for six prostate cancer (PCa) cases with low and high grade lesions annotated from whole mount histopathology. RESULTS: IDF linearly scaled with known restricted (vesicular) compartment size and PVP concentration in phantoms and increased with histopathologic score in PCa (from median 9% for atrophy up to 60% for Gleason 7). IDF via non-linear fit was independent of b-value subset selected between b = 0.1 and 2 ms/µm2 , including standard-of-care (SOC) PCa protocol. With maximum sensitivity for high grade PCa, the IDF threshold below 51% reduced false positive rate (FPR = 0/6) for low-grade PCa compared to apparent diffusion coefficient (ADC > 0.81 µm2 /ms) of PIRADS PCa scoring (FPR = 3/6). CONCLUSION: The proposed method may provide quantitative imaging assays of cancer grading using common SOC DWI protocols.


Assuntos
Neoplasias da Próstata , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Masculino , Gradação de Tumores , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Estudos Retrospectivos , Água
17.
Cancers (Basel) ; 13(20)2021 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-34680353

RESUMO

Androgen deprivation therapy (ADT) for metastatic and high-risk prostate cancer (PC) inhibits growth pathways driven by the androgen receptor (AR). Over time, ADT leads to the emergence of lethal castrate-resistant PC (CRPC), which is consistently caused by an acquired ability of tumors to re-activate AR. This has led to the development of second-generation anti-androgens that more effectively antagonize AR, such as enzalutamide (ENZ). However, the resistance of CRPC to ENZ develops rapidly. Studies utilizing preclinical models of PC have established that inhibition of the Jak2-Stat5 signaling leads to extensive PC cell apoptosis and decreased tumor growth. In large clinical cohorts, Jak2-Stat5 activity predicts PC progression and recurrence. Recently, Jak2-Stat5 signaling was demonstrated to induce ENZ-resistant PC growth in preclinical PC models, further emphasizing the importance of Jak2-Stat5 for therapeutic targeting for advanced PC. The discovery of the Jak2V617F somatic mutation in myeloproliferative disorders triggered the rapid development of Jak1/2-specific inhibitors for a variety of myeloproliferative and auto-immune disorders as well as hematological malignancies. Here, we review Jak2 inhibitors targeting the mutated Jak2V617F vs. wild type (WT)-Jak2 that are currently in the development pipeline. Among these 35 compounds with documented Jak2 inhibitory activity, those with potency against WT-Jak2 hold strong potential for advanced PC therapy.

18.
JACC CardioOncol ; 3(1): 113-130, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33912843

RESUMO

BACKGROUND: Over half of all cancer patients receive radiation therapy (RT). However, radiation exposure to the heart can cause cardiotoxicity. Nevertheless, there is a paucity of data on RT-induced cardiac damage, with limited understanding of safe regional RT doses, early detection, prevention and management. A common initial feature of cardiotoxicity is asymptomatic dysfunction, which if left untreated may progress to heart failure. The current paradigm for cardiotoxicity detection and management relies primarily upon assessment of ejection fraction (EF). However, cardiac injury can occur without a clear change in EF. OBJECTIVES: To identify magnetic resonance imaging (MRI) markers of early RT-induced cardiac dysfunction. METHODS: We investigated the effect of RT on global and regional cardiac function and myocardial T1/T2 values at two timepoints post-RT using cardiac MRI in a rat model of localized cardiac RT. Rats who received image-guided whole-heart radiation of 24Gy were compared to sham-treated rats. RESULTS: The rats maintained normal global cardiac function post-RT. However, a deterioration in strain was particularly notable at 10-weeks post RT, and changes in circumferential strain were larger than changes in radial or longitudinal strain. Compared to sham, circumferential strain changes occurred at the basal, mid-ventricular and apical levels (p<0.05 for all at both 8-weeks and 10-weeks post-RT), most of the radial strain changes occurred at the mid-ventricular (p=0.044 at 8-weeks post-RT) and basal (p=0.018 at 10-weeks post-RT) levels, and most of the longitudinal strain changes occurred at the apical (p=0.002 at 8-weeks post-RT) and basal (p=0.035 at 10-weeks post-RT) levels. Regionally, lateral myocardial segments showed the greatest worsening in strain measurements, and histologic changes supported these findings. Despite worsened myocardial strain post-RT, myocardial tissue displacement measures were maintained, or even increased. T1/T2 measurements showed small non-significant changes post-RT compared to values in non-irradiated rats. CONCLUSIONS: Our findings suggest MRI regional myocardial strain is a sensitive imaging biomarker for detecting RT-induced subclinical cardiac dysfunction prior to compromise of global cardiac function.

19.
Cancers (Basel) ; 12(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33217941

RESUMO

Stat5 is of significant interest in the search for new therapeutics for prostate cancer (PC) and hematopoietic disorders. We evaluated the transcriptomic specificity of the Stat5a/b inhibitor IST5-002 (IST5) in PC, defined more closely its mechanisms of action, and investigated the in vivo toxicity of IST5 for further optimization for clinical development. The transcriptomic specificity of IST5 vs. genetic Stat5 knockdown was evaluated by RNA-seq analysis, which showed high similarity with the Pearson correlation coefficient ranging from 0.98-0.99. The potency of IST5 vs. its derivative lacking the phosphate group in suppressing Stat5 was evaluated in two separate but complementary assays. The inhibitory activity of IST5 against kinases was investigated in cell-free assays followed by more focused evaluation in a cell-based assay. IST5 has no specific inhibitory activity against 54 kinases, while suppressing Stat5 phosphorylation and subsequent dimerization in PC cells. The phosphate group was not critical for the biological activity of IST5 in cells. The acute, sub-chronic and chronic toxicity studies of IST5 were carried out in mice. IST5 did not cause any significant toxic effects or changes in the blood profiles. The present work supports further optimization of IST5 for oral bioavailability for clinical development for therapies for solid tumors, hematological and myeloproliferative disorders.

20.
J Med Imaging (Bellingham) ; 7(5): 057501, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33062803

RESUMO

Purpose: Prostate cancer primarily arises from the glandular epithelium. Histomophometric techniques have been used to assess the glandular epithelium in automated detection and classification pipelines; however, they are often rigid in their implementation, and their performance suffers on large datasets where variation in staining, imaging, and preparation is difficult to control. The purpose of this study is to quantify performance of a pixelwise segmentation algorithm that was trained using different combinations of weak and strong stroma, epithelium, and lumen labels in a prostate histology dataset. Approach: We have combined weakly labeled datasets generated using simple morphometric techniques and high-quality labeled datasets from human observers in prostate biopsy cores to train a convolutional neural network for use in whole mount prostate labeling pipelines. With trained networks, we characterize pixelwise segmentation of stromal, epithelium, and lumen (SEL) regions on both biopsy core and whole-mount H&E-stained tissue. Results: We provide evidence that by simply training a deep learning algorithm on weakly labeled data generated from rigid morphometric methods, we can improve the robustness of classification over the morphometric methods used to train the classifier. Conclusions: We show that not only does our approach of combining weak and strong labels for training the CNN improve qualitative SEL labeling within tissue but also the deep learning generated labels are superior for cancer classification in a higher-order algorithm over the morphometrically derived labels it was trained on.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA