Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain Behav Immun ; 113: 176-188, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37468114

RESUMO

Children that survive leukemia are at an increased risk for cognitive difficulties. A better understanding of the neurobiological changes in response to early life chemotherapy will help develop therapeutic strategies to improve quality of life for leukemia survivors. To that end, we used a translationally-relevant mouse model consisting of leukemic cell line (L1210) injection into postnatal day (P)19 mice followed by methotrexate, vincristine, and leucovorin chemotherapy. Beginning one week after the end of chemotherapy, social behavior, recognition memory and executive function (using the 5 choice serial reaction time task (5CSRTT)) were tested in male and female mice. Prefrontal cortex (PFC) and hippocampus (HPC) were collected at the conclusion of behavioral assays for gene expression analysis. Mice exposed to early life cancer + chemotherapy were slower to progress through increasingly difficult stages of the 5CSRTT and showed an increase in premature errors, indicating impulsive action. A cluster of microglial-related genes in the PFC were found to be associated with performance in the 5CSRTT and acquisition of the operant response, and long-term changes in gene expression were evident in both PFC and HPC. This work identifies gene expression changes in PFC and HPC that may underlie cognitive deficits in survivors of early life exposure to cancer + chemotherapy.


Assuntos
Leucemia , Neoplasias , Camundongos , Masculino , Feminino , Animais , Microglia , Qualidade de Vida , Córtex Pré-Frontal/metabolismo , Cognição/fisiologia , Neoplasias/metabolismo , Leucemia/metabolismo , Expressão Gênica
2.
Brain Behav Immun ; 99: 192-202, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34655730

RESUMO

Survivors of acute lymphoblastic leukemia (ALL), the most common childhood cancer, are at increased risk for long-term cognitive problems, including executive function deficits. The chemotherapeutic agent methotrexate (MTX) is used to treat most ALL patients and is closely associated with cognitive deficits. To address how early life cancer chemotherapy leads to cognitive deficits, we developed a translationally relevant mouse model of leukemia survival that exposed mice to leukemic cells and chemotherapeutic drugs (vincristine and MTX, with leucovorin rescue) in early life. Male and female mice were tested several weeks later using novel object recognition (recognition memory) and 5-choice serial reaction time task (executive function). Gene expression of proinflammatory, white matter and synapse-associated molecules was assessed in the prefrontal cortex and small intestine both acutely after chemotherapy and chronically after cognitive testing. Early life cancer-chemotherapy exposure resulted in recognition memory and executive function deficits in adult male mice. Prefrontal cortex expression of the chemokine Ccl2 was increased acutely, while small intestine expression of the proinflammatory cytokine tumor necrosis factor-alpha was elevated both acutely (both sexes) and chronically (males only). Inflammation in the small intestine was correlated with prefrontal cortical proinflammatory and synaptic gene expression changes, as well as to executive function deficits. Collectively, these data indicate that the current protocol results in a robust mouse model in which to study cognitive deficits in leukemia survivors, and suggest that small intestine inflammation may represent a novel contributor to adverse CNS consequences of early life chemotherapy.


Assuntos
Citocinas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Encéfalo/patologia , Criança , Cognição , Feminino , Humanos , Intestino Delgado , Masculino , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
3.
Front Cell Neurosci ; 15: 683676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248503

RESUMO

The central nervous system (CNS) undergoes immunosurveillance despite the lack of conventional antigen presenting cells and lymphatic vessels in the CNS parenchyma. Additionally, the CNS is bathed in a cerebrospinal fluid (CSF). CSF is continuously produced, and consequently must continuously clear to maintain fluid homeostasis despite the lack of conventional lymphatics. During neuroinflammation, there is often an accumulation of fluid, antigens, and immune cells to affected areas of the brain parenchyma. Failure to effectively drain these factors may result in edema, prolonged immune response, and adverse clinical outcome as observed in conditions including traumatic brain injury, ischemic and hypoxic brain injury, CNS infection, multiple sclerosis (MS), and brain cancer. Consequently, there has been renewed interest surrounding the expansion of lymphatic vessels adjacent to the CNS which are now thought to be central in regulating the drainage of fluid, cells, and waste out of the CNS. These lymphatic vessels, found at the cribriform plate, dorsal dural meninges, base of the brain, and around the spinal cord have each been implicated to have important roles in various CNS diseases. In this review, we discuss the contribution of meningeal lymphatics to these processes during both steady-state conditions and neuroinflammation, as well as discuss some of the many still unknown aspects regarding the role of meningeal lymphatics in neuroinflammation. Specifically, we focus on the observed phenomenon of lymphangiogenesis by a subset of meningeal lymphatics near the cribriform plate during neuroinflammation, and discuss their potential roles in immunosurveillance, fluid clearance, and access to the CSF and CNS compartments. We propose that manipulating CNS lymphatics may be a new therapeutic way to treat CNS infections, stroke, and autoimmunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA