Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Pharmacol Transl Sci ; 7(4): 1142-1168, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38633582

RESUMO

The neuropeptide Y (NPY) Y4 receptor (Y4R), a member of the family of NPY receptors, is physiologically activated by the linear 36-amino acid peptide pancreatic polypeptide (PP). The Y4R is involved in the regulation of various biological processes, most importantly pancreatic secretion, gastrointestinal motility, and regulation of food intake. So far, Y4R binding affinities have been mostly studied in radiochemical binding assays. Except for a few fluorescently labeled PP derivatives, fluorescence-tagged Y4R ligands with high affinity have not been reported. Here, we introduce differently fluorescence-labeled (Sulfo-Cy5, Cy3B, Py-1, Py-5) Y4R ligands derived from recently reported cyclic hexapeptides showing picomolar Y4R binding affinity. With pKi values of 9.22-9.71 (radioligand competition binding assay), all fluorescent ligands (16-19) showed excellent Y4R affinity. Y4R saturation binding, binding kinetics, and competition binding with reference ligands were studied using different fluorescence-based methods: flow cytometry (Sulfo-Cy5, Cy3B, and Py-1 label), fluorescence anisotropy (Cy3B label), and NanoBRET (Cy3B label) binding assays. These experiments confirmed the high binding affinity to Y4R (equilibrium pKd: 9.02-9.9) and proved the applicability of the probes for fluorescence-based Y4R competition binding studies and imaging techniques such as single-receptor molecule tracking.

2.
Pharmaceutics ; 15(5)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37242727

RESUMO

Immune checkpoint inhibitors are increasingly used in combination with chemotherapy for the treatment of non-small cell lung cancer, yet the success of combination therapies is relatively limited. Thus, more detailed insight regarding the tumor molecular markers that may affect the responsiveness of patients to therapy is required. Here, we set out to explore the proteome of two lung adenocarcinoma cell lines (HCC-44 and A549) treated with cisplatin, pemetrexed, durvalumab, and the corresponding mixtures to establish the differences in post-treatment protein expression that can serve as markers of chemosensitivity or resistance. The mass spectrometry study showed that the addition of durvalumab to the treatment mixture resulted in cell line- and chemotherapeutic agent-dependent responses and confirmed the previously reported involvement of DNA repair machinery in the potentiation of the chemotherapy effect. Further validation using immunofluorescence also indicated that the potentiating effect of durvalumab in the case of cisplatin treatment was dependent on the tumor suppressor RB-1 in the PD-L1 weakly positive cells. In addition, we identified aldehyde dehydrogenase ALDH1A3 as the general putative resistance marker. Further studies in patient biopsy samples will be required to confirm the clinical significance of these findings.

3.
Biosensors (Basel) ; 12(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35448256

RESUMO

Since 1991, the NAD(P)H-aided conversion of resazurin to fluorescent resorufin has been widely used to measure viability based on the metabolic activity in mammalian cell culture and primary cells. However, different research groups have used divergent assay protocols, scarcely reporting the systematic optimization of the assay. Here, we perform extensive studies to fine-tune the experimental protocols utilizing resazurin-based viability sensing. Specifically, we focus on (A) optimization of the assay dynamic range in individual cell lines for the correct measurement of cytostatic and cytotoxic properties of the compounds; (B) dependence of the dynamic range on the physical quantity detected (fluorescence intensity versus change of absorbance spectrum); (C) calibration of the assay for the correct interpretation of data measured in hypoxic conditions; and (D) possibilities for combining the resazurin assay with other methods including measurement of necrosis and apoptosis. We also demonstrate the enhanced precision and flexibility of the resazurin-based assay regarding the readout format and kinetic measurement mode as compared to the widely used analogous assay which utilizes tetrazolium dye MTT. The discussed assay optimization guidelines provide useful instructions for the beginners in the field and for the experienced scientists exploring new ways for measurement of cellular viability using resazurin.


Assuntos
Antineoplásicos , Xantenos , Animais , Antineoplásicos/farmacologia , Bioensaio , Sobrevivência Celular , Mamíferos/metabolismo , Oxazinas , Xantenos/metabolismo , Xantenos/farmacologia
4.
J Med Chem ; 65(6): 4832-4853, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35263541

RESUMO

The recent crystallization of the neuropeptide Y Y1 receptor (Y1R) in complex with the argininamide-type Y1R selective antagonist UR-MK299 (2) opened up a new approach toward structure-based design of nonpeptidic Y1R ligands. We designed novel fluorescent probes showing excellent Y1R selectivity and, in contrast to previously described fluorescent Y1R ligands, considerably higher (∼100-fold) binding affinity. This was achieved through the attachment of different fluorescent dyes to the diphenylacetyl moiety in 2 via an amine-functionalized linker. The fluorescent ligands exhibited picomolar Y1R binding affinities (pKi values of 9.36-9.95) and proved to be Y1R antagonists, as validated in a Fura-2 calcium assay. The versatile applicability of the probes as tool compounds was demonstrated by flow cytometry- and fluorescence anisotropy-based Y1R binding studies (saturation and competition binding and association and dissociation kinetics) as well as by widefield and total internal reflection fluorescence (TIRF) microscopy of live tumor cells, revealing that fluorescence was mainly localized at the plasma membrane.


Assuntos
Neuropeptídeo Y , Receptores de Neuropeptídeo Y , Ligação Competitiva , Corantes Fluorescentes , Ligantes , Neuropeptídeo Y/química , Receptores de Neuropeptídeo Y/metabolismo
5.
Sci Rep ; 11(1): 20338, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645858

RESUMO

Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas , Ciclo Celular/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma , Azacitidina/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Lomustina/farmacologia , Temozolomida/farmacologia
6.
Methods Mol Biol ; 2268: 179-192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34085269

RESUMO

Cyclic adenosine monophosphate (cAMP) serves as a second messenger for numerous G-protein-coupled receptors. Changes in cellular cAMP levels reflect the biological activity of various GPCR-specific agents, including protein hormones. cAMP biosensors based on detection of Förster-type resonance energy transfer (FRET) offer unique advantages including the ratiometric nature of measurement, adjustable affinity toward detected molecule, capability of monitoring kinetics of cAMP release, and compatibility with the multi-well format and fluorescence plate reader platforms. In this chapter, we introduce the optimized version of the previously reported method to achieve sufficient and reproducible level of cAMP biosensor protein expression with the means of BacMam transduction system. As a practical challenge, we address the applicability of the designed assay for screening of biological activity of human hormones, including human chorionic gonadotropin (hCG) bearing different posttranslational modifications.


Assuntos
Baculoviridae/metabolismo , Gonadotropina Coriônica/metabolismo , AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores do LH/metabolismo , Animais , Baculoviridae/genética , Técnicas Biossensoriais/métodos , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Substâncias para o Controle da Reprodução/farmacologia , Transdução de Sinais
7.
J Neurochem ; 153(3): 346-361, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31792980

RESUMO

Melanocortin-4 receptors (MC4 R) are unique among G-protein-coupled receptors (GPCRs) as they have endogenous ligands that can exhibit inverse agonistic properties in the case of elevated basal activity. It is known that the constitutive activity of GPCRs strongly affects the ligand-dependent physiological responses, but little is known about these regulatory mechanisms. Since several metal ions have been shown to be important modulators of the signal transduction of GPCRs, we hypothesized that metal ions regulate the basal activity of MC4 Rs. Implementation of a fluorescence anisotropy assay and novel redshifted fluorescent peptides enabled kinetic characterization of ligand binding to MC4 R expressed on budded baculoviruses. We show that Ca2+ is required for high-affinity ligand binding, but Zn2+ and Cu2+ in the presence of Ca2+ behave as negative allosteric modulators of ligand binding to MC4 R. FRET-based cAMP biosensor was used to measure the activation of MC4 R stably expressed in CHO-K1 cells. At low micromolar concentrations, Zn2+ caused MC4 R-dependent activation of the cAMP pathway, whereas Cu2+ reduced the activity of MC4 R even below the basal level. These findings indicate that at physiologically relevant concentrations can Zn2+ and Cu2+ function as MC4 R agonists or inverse agonists, respectively. This means that depending on the level of constitutive activity induced by Zn2+ ions, the pharmacological effect of orthosteric ligands of MC4 R can be switched from a partial to an inverse agonist. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. More information about the Open Science badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Cobre/metabolismo , AMP Cíclico/metabolismo , Receptor Tipo 4 de Melanocortina/agonistas , Receptor Tipo 4 de Melanocortina/metabolismo , Transdução de Sinais/fisiologia , Zinco/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células CHO , Cobre/farmacologia , Cricetinae , Cricetulus , Humanos , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Receptor Tipo 4 de Melanocortina/química , Células Sf9 , Transdução de Sinais/efeitos dos fármacos , Zinco/farmacologia
8.
Anal Biochem ; 531: 67-77, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28527909

RESUMO

High demand for inhibitors regulating the activity of protein kinases has stimulated the quest for high throughput and reliable compound screening assays. Here we introduce a method applying a non-metal photoluminescent probe ARC-Lum(Fluo) for determination of dissociation constants of competitive inhibitors of protein kinases. Employing a single probe instead of a combination of antibody and fluorescent tracer makes the assay simpler, cheaper, and more accurate than several other inhibitor-screening technologies. High affinity (20 pM) and low background signal of the free probe supports the determination of dissociation constants of tight-binding as well as low affinity inhibitors. The calculated lowest Kd value that can be accurately determined with the method is 60 fM. We also introduce graphical presentation of the linearized Cheng-Prusoff equation and demonstrate multiple possibilities for its application (deciding upon the assay formats, calculation of the limits of Kd determination, etc.). The open toolbox (http://www.ut.ee/medchem/toolbox-fluorescence-probes) is available for creating the map of resolvable affinities if applying the competitive probes at defined assay conditions.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas Quinases Dependentes de AMP Cíclico/química , Fluorescência , Inibidores de Proteínas Quinases/análise , Humanos , Inibidores de Proteínas Quinases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA