Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Proteomics ; 290: 105036, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-37879565

RESUMO

This study aimed to compare urine proteomics from non- and pregnant buffaloes in order to identify potential biomarkers of early pregnancy. Forty-four females underwent hormonal ovulation synchronization and were randomly divided into two experimental groups: inseminated (n = 30) and non-inseminated (n = 14). The pregnant females were further divided into two groups: pregnant at Day 12 (P12; n = 8) and at Day 18 (P18; n = 8) post-ovulation. The non-pregnant group was also subdivided into two groups: non-pregnant at Day 12 (NP12; n = 7) and at Day 18 (NP18; n = 7). Urine was collected from all females on Days 12 or 18. The samples were processed for proteomics. A total of 798 proteins were reported in the urine considering all groups. The differential proteins play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that some proteins from our study can be considered biomarkers for early pregnancy diagnosis, since they were increased in pregnant buffaloes. SIGNIFICANCE: Macromolecules have been studied for early pregnancy diagnosis, aiming to increase reproductive efficiency in cattle and buffaloes. Direct methods such as rectal palpation and ultrasonography have been considered late. Thus, this study aimed to compare urine proteomics from non- and pregnant buffaloes to identify potential biomarkers of early pregnancy. The differential proteins found in our study play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that these proteins can be considered possible biomarkers for early pregnancy diagnosis since they were increased in the pregnant buffaloes.


Assuntos
Búfalos , Progesterona , Animais , Bovinos , Feminino , Gravidez , Biomarcadores , Diagnóstico Precoce , Proteômica
2.
Toxicon ; 229: 107138, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37127124

RESUMO

African trypanosomiasis is an infectious disease caused by hemoparasites of the genus Trypanosoma and remains a major health problem in Africa - killing around 4000 people and animals worth an estimated $5 billion, annually. The absence of a vaccine and satisfactory drug against African trypanosomiasis (AT) necessitates the continued search for new chemotherapy options. Owing to the rich biochemical diversity in snake venom, it has recently become a source of therapeutic peptides that are being explored for the development of novel drug candidates for diverse ailments such as cancers and infectious diseases. To explore this, Echis ocellatus venom (EOV) was investigated for the presence of an anti-Trypanosoma factor, with the subsequent aim to isolate and identify it. Crude EOV was collected and tested in vitro on the bloodstream form (BSF) i.e. long and slender morphological form of Trypanosoma brucei and T. congolense. This initial testing was followed by a sequential anti-trypanosomal assay guided purification of EOV using ethanol precipitation, distillation, and ion exchange (IEX) chromatography to obtain the active trypanocidal component. The purified anti-Trypanosoma factor, estimated to be a 52-kDa protein on SDS-PAGE, was subjected to in-gel trypsin digestion and 2D RP HPLC-MS/MS to identify the protein. The anti-Trypanosoma factor was revealed to be a zinc-dependent metalloproteinase that contains the HEXXHXXGXXH adamalysin motif. This protein may provide a conceptual framework for the possible design of a safe and effective anti-trypanosomal peptide for the treatment of AT.


Assuntos
Trypanosoma , Tripanossomíase Africana , Viperidae , Animais , Venenos de Víboras/química , Tripanossomíase Africana/tratamento farmacológico , Espectrometria de Massas em Tandem , Viperidae/metabolismo , Metaloproteases/metabolismo
3.
J Insect Physiol ; 139: 104400, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598778

RESUMO

Spodoptera frugiperda (fall armyworm - FAW) is an important polyphagous agricultural pest feeding on nearly 350 host plants. FAW is undergoing incipient speciation with two well-characterized host-adapted strains, the "corn" (CS) and "rice" (RS) strains, which are morphologically identical but carry several genes under positive selection for host adaptation. We used non-targeted metabolomics based on gas chromatography/mass spectrometry to identify differences in metabolite profiles of the larval gut of CS and RS feeding on different host plants. Larvae were fed on artificial diet, maize, rice, or cotton leaves from eclosion to the sixth instar, when they had their midgut dissected for analysis. This study revealed that the midgut metabolome of FAW varied due to larval diet and differed between the FAW host-adapted strains. Additionally, we identified several candidate metabolites that may be involved in the adaptation of CS and RS to their host plants. Our findings provide clues toward the gut metabolic activities of the FAW strains.


Assuntos
Metaboloma , Oryza , Animais , Larva , Metabolômica , Plantas , Spodoptera/genética , Zea mays
4.
J Proteome Res ; 9(12): 6191-206, 2010 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-20936827

RESUMO

Protein kinase C (PKC) plays a key role in embryonic stem cell (ESC) proliferation, self-renewal, and differentiation. However, the function of specific PKC isoenzymes have yet to be determined. Of the PKCs expressed in undifferentiated ESCs, ßIPKC was the only isoenzyme abundantly expressed in the nuclei. To investigate the role of ßΙPKC in these cells, we employed a phosphoproteomics strategy and used two classical (cPKC) peptide modulators and one ßIPKC-specific inhibitor peptide. We identified 13 nuclear proteins that are direct or indirect ßΙPKC substrates in undifferentiated ESCs. These proteins are known to be involved in regulating transcription, splicing, and chromatin remodeling during proliferation and differentiation. Inhibiting ßΙPKC had no effect on DNA synthesis in undifferentiated ESCs. However, upon differentiation, many cells seized to express ßΙPKC and ßΙPKC was frequently found in the cytoplasm. Taken together, our results suggest that ßIPKC takes part in the processes that maintain ESCs in their undifferentiated state.


Assuntos
Células-Tronco Embrionárias/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Proteômica/métodos , Sequência de Aminoácidos , Animais , Western Blotting , Diferenciação Celular , Linhagem Celular , Núcleo Celular/metabolismo , Eletroforese em Gel Bidimensional , Células-Tronco Embrionárias/citologia , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Peptídeos/farmacologia , Fosfoproteínas/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C beta , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Especificidade por Substrato , Transcrição Gênica
5.
Genet. mol. biol ; 33(4): 686-695, 2010. ilus, graf, tab
Artigo em Português | LILACS | ID: lil-571519

RESUMO

UDP-glucose dehydrogenase (UGDH) catalyzes the oxidation of UDP-glucose (UDP-Glc) to UDP-glucuronate (UDP-GlcA), a key sugar nucleotide involved in the biosynthesis of plant cell wall polysaccharides. A full-length cDNA fragment coding for UGDH was cloned from the cambial region of 6-month-old E. grandis saplings by RT-PCR. The 1443-bp-ORF encodes a protein of 480 amino acids with a predicted molecular weight of 53 kDa. The recombinant protein expressed in Escherichia coli catalyzed the conversion of UDP-Glc to UDP-GlcA, confirming that the cloned cDNA encodes UGDH. The deduced amino acid sequence of the cDNA showed a high degree of identity with UGDH from several plant species. The Southern blot assay indicated that more than one copy of UGDH is present in Eucalyptus. These results were also confirmed by the proteomic analysis of the cambial region of 3- and 22-year-old E. grandis trees by 2-DE and LC-MS/MS, showing that at least two isoforms are present. The cloned gene is mainly expressed in roots, stem and bark of 6-month-old saplings, with a lower expression in leaves. High expression levels were also observed in the cambial region of 3- and 22-year-old trees. The results described in this paper provide a further view of the hemicellulose biosynthesis during wood formation in E. grandis.

6.
Antonie Van Leeuwenhoek ; 93(4): 415-24, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18181027

RESUMO

The rhizosphere constitutes a complex niche that may be exploited by a wide variety of bacteria. Bacterium-plant interactions in this niche can be influenced by factors such as the expression of heterologous genes in the plant. The objective of this work was to describe the bacterial communities associated with the rhizosphere and rhizoplane regions of tobacco plants, and to compare communities from transgenic tobacco lines (CAB1, CAB2 and TRP) with those found in wild-type (WT) plants. Samples were collected at two stages of plant development, the vegetative and flowering stages (1 and 3 months after germination). The diversity of the culturable microbial community was assessed by isolation and further characterization of isolates by amplified ribosomal RNA gene restriction analysis (ARDRA) and 16S rRNA sequencing. These analyses revealed the presence of fairly common rhizosphere organisms with the main groups Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacilli. Analysis of the total bacterial communities using PCR-DGGE (denaturing gradient gel electrophoresis) revealed that shifts in bacterial communities occurred during early plant development, but the reestablishment of original community structure was observed over time. The effects were smaller in rhizosphere than in rhizoplane samples, where selection of specific bacterial groups by the different plant lines was demonstrated. Clustering patterns and principal components analysis (PCA) were used to distinguish the plant lines according to the fingerprint of their associated bacterial communities. Bands differentially detected in plant lines were found to be affiliated with the genera Pantoea, Bacillus and Burkholderia in WT, CAB and TRP plants, respectively. The data revealed that, although rhizosphere/rhizoplane microbial communities can be affected by the cultivation of transgenic plants, soil resilience may be able to restore the original bacterial diversity after one cycle of plant cultivation.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Nicotiana/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , DNA Ribossômico/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Nicotiana/microbiologia
7.
Plant Mol Biol ; 55(5): 701-14, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15604711

RESUMO

Lhcb1-2 from pea was constitutively expressed in transgenic tobacco plants and assessed for functional impact. The successful assembly of the encoded proteins into LHCII trimers was confirmed by electrospray tandem mass spectrometry. Constitutive production of LHCb1-2 led to increased number of thylakoid membranes per chloroplast, increased grana stacking, higher chloroplast numbers per palisade cell and increased photosynthetic capacity at low irradiance, both on a chlorophyll and leaf area basis. The transgenic plants also displayed increased cell volume, larger leaves, higher leaf number per plant at flowering, increased biomass and increased seed weight, when grown under low irradiance levels. Under high irradiance, both transgenic and wild type plants displayed similar photosynthetic rates when tested at 25 degrees C; however, the non-photochemical quenching (NPQ) and qE values increased in the transgenic plants. The exposure of transgenic plants to a photoinhibitory treatment (4 degrees C for 4 h, under continuous illumination) resulted in more detrimental impairment of photosynthesis, since recovery was slower than the non-transgenic plants. These data indicate that constitutive expression of additional Lhcb1-2 transgenes led to a series of changes at all levels of the plant (cellular, leaf and whole organism), and a delay in flowering and senescence. The additional production of the pea protein appears to be accommodated by increasing cellular structures such as the number of thylakoids per chloroplast, organelle volume, organelles per cell, and leaf expansion. The presence of the trimeric pea protein in the tobacco LHCII, however, caused a possible change in the organization of the associated super-complex, that in turn limited photosynthesis at low temperature.


Assuntos
Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Sequência de Aminoácidos , Metabolismo dos Carboidratos , Dióxido de Carbono/farmacologia , Genótipo , Immunoblotting , Luz , Microscopia Eletrônica , Dados de Sequência Molecular , Oxigênio/farmacologia , Pisum sativum/genética , Pisum sativum/metabolismo , Fenótipo , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Tilacoides/metabolismo , Tilacoides/ultraestrutura , Fatores de Tempo , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA