Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Palliat Care ; 23(1): 62, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429698

RESUMO

BACKGROUND: Breakthrough cancer pain (BTCP) is primarily managed at home and can stem from physical exertion and emotional distress triggers. Beyond these triggers, the impact of ambient environment on pain occurrence and intensity has not been investigated. This study explores the impact of environmental factors on the frequency and severity of breakthrough cancer pain (BTCP) in the home context from the perspective of patients with advanced cancer and their primary family caregiver. METHODS: A health monitoring system was deployed in the homes of patient and family caregiver dyads to collect self-reported pain events and contextual environmental data (light, temperature, humidity, barometric pressure, ambient noise.) Correlation analysis examined the relationship between environmental factors with: 1) individually reported pain episodes and 2) overall pain trends in a 24-hour time window. Machine learning models were developed to explore how environmental factors may predict BTCP episodes. RESULTS: Variability in correlation strength between environmental variables and pain reports among dyads was found. Light and noise show moderate association (r = 0.50-0.70) in 66% of total deployments. The strongest correlation for individual pain events involved barometric pressure (r = 0.90); for pain trends over 24-hours the strongest correlations involved humidity (r = 0.84) and barometric pressure (r = 0.83). Machine learning achieved 70% BTCP prediction accuracy. CONCLUSION: Our study provides insights into the role of ambient environmental factors in BTCP and offers novel opportunities to inform personalized pain management strategies, remotely support patients and their caregivers in self-symptom management. This research provides preliminary evidence of the impact of ambient environmental factors on BTCP in the home setting. We utilized real-world data and correlation analysis to provide an understanding of the relationship between environmental factors and cancer pain which may be helpful to others engaged in similar work.


Assuntos
Dor Irruptiva , Dor do Câncer , Neoplasias , Humanos , Analgésicos Opioides , Ciência de Dados , Manejo da Dor , Neoplasias/complicações
2.
Digit Health ; 9: 20552076231194936, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37654707

RESUMO

Background: Pain continues to be a difficult and pervasive problem for patients with cancer, and those who care for them. Remote health monitoring systems (RHMS), such as the Behavioral and Environmental Sensing and Intervention for Cancer (BESI-C), can utilize Ecological Momentary Assessments (EMAs) to provide a more holistic understanding of the patient and family experience of cancer pain within the home context. Methods: Participants used the BESI-C system for 2-weeks which collected data via EMAs deployed on wearable devices (smartwatches) worn by both patients with cancer and their primary family caregiver. We developed three unique EMA schemas that allowed patients and caregivers to describe patient pain events and perceived impact on quality of life from their own perspective. EMA data were analyzed to provide a descriptive summary of pain events and explore different types of data visualizations. Results: Data were collected from five (n = 5) patient-caregiver dyads (total 10 individual participants, 5 patients, 5 caregivers). A total of 283 user-initiated pain event EMAs were recorded (198 by patients; 85 by caregivers) over all 5 deployments with an average severity score of 5.4/10 for patients and 4.6/10 for caregivers' assessments of patient pain. Average self-reported overall distress and pain interference levels (1 = least distress; 4 = most distress) were higher for caregivers (x¯ 3.02, x¯2.60,respectively) compared to patients (x¯ 2.82, x¯ 2.25, respectively) while perceived burden of partner distress was higher for patients (i.e., patients perceived caregivers to be more distressed, x¯ 3.21, than caregivers perceived patients to be distressed, x¯2.55). Data visualizations were created using time wheels, bubble charts, box plots and line graphs to graphically represent EMA findings. Conclusion: Collecting data via EMAs is a viable RHMS strategy to capture longitudinal cancer pain event data from patients and caregivers that can inform personalized pain management and distress-alleviating interventions.

3.
JMIR Cancer ; 8(3): e36879, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35943791

RESUMO

BACKGROUND: Distressing cancer pain remains a serious symptom management issue for patients and family caregivers, particularly within home settings. Technology can support home-based cancer symptom management but must consider the experience of patients and family caregivers, as well as the broader environmental context. OBJECTIVE: This study aimed to test the feasibility and acceptability of a smart health sensing system-Behavioral and Environmental Sensing and Intervention for Cancer (BESI-C)-that was designed to support the monitoring and management of cancer pain in the home setting. METHODS: Dyads of patients with cancer and their primary family caregivers were recruited from an outpatient palliative care clinic at an academic medical center. BESI-C was deployed in each dyad home for approximately 2 weeks. Data were collected via environmental sensors to assess the home context (eg, light and temperature); Bluetooth beacons to help localize dyad positions; and smart watches worn by both patients and caregivers, equipped with heart rate monitors, accelerometers, and a custom app to deliver ecological momentary assessments (EMAs). EMAs enabled dyads to record and characterize pain events from both their own and their partners' perspectives. Sensor data streams were integrated to describe and explore the context of cancer pain events. Feasibility was assessed both technically and procedurally. Acceptability was assessed using postdeployment surveys and structured interviews with participants. RESULTS: Overall, 5 deployments (n=10 participants; 5 patient and family caregiver dyads) were completed, and 283 unique pain events were recorded. Using our "BESI-C Performance Scoring Instrument," the overall technical feasibility score for deployments was 86.4 out of 100. Procedural feasibility challenges included the rurality of dyads, smart watch battery life and EMA reliability, and the length of time required for deployment installation. Postdeployment acceptability Likert surveys (1=strongly disagree; 5=strongly agree) found that dyads disagreed that BESI-C was a burden (1.7 out of 5) or compromised their privacy (1.9 out of 5) and agreed that the system collected helpful information to better manage cancer pain (4.6 out of 5). Participants also expressed an interest in seeing their own individual data (4.4 out of 5) and strongly agreed that it is important that data collected by BESI-C are shared with their respective partners (4.8 out of 5) and health care providers (4.8 out of 5). Qualitative feedback from participants suggested that BESI-C positively improved patient-caregiver communication regarding pain management. Importantly, we demonstrated proof of concept that seriously ill patients with cancer and their caregivers will mark pain events in real time using a smart watch. CONCLUSIONS: It is feasible to deploy BESI-C, and dyads find the system acceptable. By leveraging human-centered design and the integration of heterogenous environmental, physiological, and behavioral data, the BESI-C system offers an innovative approach to monitor cancer pain, mitigate the escalation of pain and distress, and improve symptom management self-efficacy. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/16178.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5441-5445, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892357

RESUMO

Central airway obstruction (CAO) is a respiratory disorder characterized by the blockage of the trachea and/or the main bronchi that can be life-threatening. Airway stenting is a palliative procedure for CAO commonly used given its efficacy. However, mucus impaction, secretion retention, and granulation tissue growth are known complications that can counteract the stent's benefits. To prevent these situations, patients are routinely brought into the hospital to check stent patency, incurring a burden for the patient and the health care system, unnecessarily when no problems are found. In this paper, we introduce a capacitive sensor embedded in a stent that can detect solid and colloidal obstructions in the stent, as such obstructions alter the capacitor's dielectric relative permittivity. In the case of colloidal obstructions (e.g., mucus), volumes as low as 0.1 ml can be detected. Given the small form factor of the sensor, it could be adapted to a variety of stent types without changing the standard bronchoscopy insertion method. The proposed system is a step forward in the development of smart airway stents that overcome the limitations of current stenting technology.Clinical Relevance- This establishes the foundation for smart stent technology to monitor stent patency as an alternative to rutinary bronchoscopies.


Assuntos
Obstrução das Vias Respiratórias , Broncoscopia , Brônquios , Humanos , Stents , Traqueia
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 980-984, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891452

RESUMO

Early identification of motion disparities in Anterior Cruciate Ligament reconstructed (ACL-R) athletes may better post-operative decision making when returning athletes to sport. Existing return to play assessments consist of assessments of muscle strength, functional tasks, patient-reported outcomes, and 3D coordinate tracking. However, these methods primarily depend on the medical provider's intuition to release them to participate in an unrestricted activity after ACL-R that may cause reinjury or long-term impacts. This study proposes a wearable sensor-based system that helps track athlete rehabilitation progress and return to sport decision making. For this, we capture gait data from 89 ACL-R athletes during their walking and jogging trials. The raw gyroscope data collected from this system is used to extract causal features based on Nolte's phase slope index. Features extracted from this study are used to develop computational models that classify ACL-R athletes based on their reconstructed knee during two visits (3-6 months & 9 months) post ACL-R surgery. The classifier's performance degradation in detecting ACL-R athletes injured knee during multiple visits supports athletic trainers and physicians' decision-making process to confirm an athlete's safe return to sport.Clinical Relevance- This study develops computational models based on causal analysis of gait data to support athletic trainers and medical practitioners' decision to return athletes to sport post ACL-R surgery.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Lesões do Ligamento Cruzado Anterior/cirurgia , Atletas , Simulação por Computador , Marcha , Humanos , Volta ao Esporte
6.
JMIR Form Res ; 4(8): e20836, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32712581

RESUMO

BACKGROUND: Inadequately managed pain is a serious problem for patients with cancer and those who care for them. Smart health systems can help with remote symptom monitoring and management, but they must be designed with meaningful end-user input. OBJECTIVE: This study aims to understand the experience of managing cancer pain at home from the perspective of both patients and family caregivers to inform design of the Behavioral and Environmental Sensing and Intervention for Cancer (BESI-C) smart health system. METHODS: This was a descriptive pilot study using a multimethod approach. Dyads of patients with cancer and difficult pain and their primary family caregivers were recruited from an outpatient oncology clinic. The participant interviews consisted of (1) open-ended questions to explore the overall experience of cancer pain at home, (2) ranking of variables on a Likert-type scale (0, no impact; 5, most impact) that may influence cancer pain at home, and (3) feedback regarding BESI-C system prototypes. Qualitative data were analyzed using a descriptive approach to identity patterns and key themes. Quantitative data were analyzed using SPSS; basic descriptive statistics and independent sample t tests were run. RESULTS: Our sample (n=22; 10 patient-caregiver dyads and 2 patients) uniformly described the experience of managing cancer pain at home as stressful and difficult. Key themes included (1) unpredictability of pain episodes; (2) impact of pain on daily life, especially the negative impact on sleep, activity, and social interactions; and (3) concerns regarding medications. Overall, taking pain medication was rated as the category with the highest impact on a patient's pain (=4.79), followed by the categories of wellness (=3.60; sleep quality and quantity, physical activity, mood and oral intake) and interaction (=2.69; busyness of home, social or interpersonal interactions, physical closeness or proximity to others, and emotional closeness and connection to others). The category related to environmental factors (temperature, humidity, noise, and light) was rated with the lowest overall impact (=2.51). Patients and family caregivers expressed receptivity to the concept of BESI-C and reported a preference for using a wearable sensor (smart watch) to capture data related to the abrupt onset of difficult cancer pain. CONCLUSIONS: Smart health systems to support cancer pain management should (1) account for the experience of both the patient and the caregiver, (2) prioritize passive monitoring of physiological and environmental variables to reduce burden, and (3) include functionality that can monitor and track medication intake and efficacy; wellness variables, such as sleep quality and quantity, physical activity, mood, and oral intake; and levels of social interaction and engagement. Systems must consider privacy and data sharing concerns and incorporate feasible strategies to capture and characterize rapid-onset symptoms.

7.
JMIR Res Protoc ; 8(12): e16178, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31815679

RESUMO

BACKGROUND: An estimated 60%-90% of patients with cancer experience moderate to severe pain. Poorly managed cancer pain negatively affects the quality of life for both patients and their family caregivers and can be a particularly challenging symptom to manage at home. Mobile and wireless technology ("Smart Health") has significant potential to support patients with cancer and their family caregivers and empower them to safely and effectively manage cancer pain. OBJECTIVE: This study will deploy a package of sensing technologies, known as Behavioral and Environmental Sensing and Intervention for Cancer (BESI-C), and evaluate its feasibility and acceptability among patients with cancer-family caregiver dyads. Our primary aims are to explore the ability of BESI-C to reliably measure and describe variables relevant to cancer pain in the home setting and to better understand the dyadic effect of pain between patients and family caregivers. A secondary objective is to explore how to best share collected data among key stakeholders (patients, caregivers, and health care providers). METHODS: This descriptive two-year pilot study will include dyads of patients with advanced cancer and their primary family caregivers recruited from an academic medical center outpatient palliative care clinic. Physiological (eg, heart rate, activity) and room-level environmental variables (ambient temperature, humidity, barometric pressure, light, and noise) will be continuously monitored and collected. Behavioral and experiential variables will be actively collected when the caregiver or patient interacts with the custom BESI-C app on their respective smart watch to mark and describe pain events and answer brief, daily ecological momentary assessment surveys. Preliminary analysis will explore the ability of the sensing modalities to infer and detect pain events. Feasibility will be assessed by logistic barriers related to in-home deployment, technical failures related to data capture and fidelity, smart watch wearability issues, and patient recruitment and attrition rates. Acceptability will be measured by dyad perceptions and receptivity to BESI-C through a brief, structured interview and surveys conducted at deployment completion. We will also review summaries of dyad data with participants and health care providers to seek their input regarding data display and content. RESULTS: Recruitment began in July 2019 and is in progress. We anticipate the preliminary results to be available by summer 2021. CONCLUSIONS: BESI-C has significant potential to monitor and predict pain while concurrently enhancing communication, self-efficacy, safety, and quality of life for patients and family caregivers coping with serious illness such as cancer. This exploratory research offers a novel approach to deliver personalized symptom management strategies, improve patient and caregiver outcomes, and reduce disparities in access to pain management and palliative care services. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/16178.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA