Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 12(1): 23, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130839

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer, characterised by stromal remodelling, elevated matrix stiffness and high metastatic rate. Retinoids, compounds derived from vitamin A, have a history of clinical use in cancer for their anti-proliferative and differentiation effects, and more recently have been explored as anti-stromal therapies in PDAC for their ability to induce mechanical quiescence in cancer associated fibroblasts. Here, we demonstrate that retinoic acid receptor ß (RAR-ß) transcriptionally represses myosin light chain 2 (MLC-2) expression in pancreatic cancer cells. As a key regulatory component of the contractile actomyosin machinery, MLC-2 downregulation results in decreased cytoskeletal stiffness and traction force generation, impaired response to mechanical stimuli via mechanosensing and reduced ability to invade through the basement membrane. This work highlights the potential of retinoids to target the mechanical drivers of pancreatic cancer.

2.
ACS Nano ; 16(3): 4322-4337, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35255206

RESUMO

Liver fibrosis, a condition characterized by extensive deposition and cross-linking of extracellular matrix (ECM) proteins, is idiosyncratic in cases of chronic liver injury. The dysregulation of ECM remodeling by hepatic stellate cells (HSCs), the main mediators of fibrosis, results in an elevated ECM stiffness that drives the development of chronic liver disease such as cirrhosis and hepatocellular carcinoma. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a key element in the regulation of ECM remodeling, which modulates the degradation and turnover of ECM components. We have previously reported that a rigid, fibrotic-like substrate can impact TIMP-1 expression at the protein level in HSCs without altering its mRNA expression. While HSCs are known to be highly susceptible to mechanical stimuli, the mechanisms through which mechanical cues regulate TIMP-1 at the post-translational level remain unclear. Here, we show a mechanism of regulation of plasma membrane tension by matrix stiffness. We found that this effect is orchestrated by the ß1 integrin/RhoA axis and results in elevated exocytosis and secretion of TIMP-1 in a caveolin-1- and dynamin-2-dependent manner. We then show that TIMP-1 and caveolin-1 expression increases in cirrhosis and hepatocellular carcinoma. These conditions are associated with fibrosis, and this effect can be recapitulated in 3D fibrosis models consisting of hepatic stellate cells encapsulated in a self-assembling polypeptide hydrogel. This work positions stiffness-dependent membrane tension as a key regulator of enzyme secretion and function and a potential target for therapeutic strategies that aim at modulating ECM remodeling in chronic liver disease.


Assuntos
Carcinoma Hepatocelular , Caveolina 1 , Neoplasias Hepáticas , Inibidor Tecidual de Metaloproteinase-1 , Carcinoma Hepatocelular/patologia , Caveolina 1/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Fígado/metabolismo , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Inibidor Tecidual de Metaloproteinase-1/metabolismo
3.
Cancers (Basel) ; 13(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209094

RESUMO

The tumor microenvironment plays a critical role in modulating cancer cell migration, metabolism, and malignancy, thus, highlighting the need to develop in vitro culture systems that can recapitulate its abnormal properties. While a variety of stiffness-tunable biomaterials, reviewed here, have been developed to mimic the rigidity of the tumor extracellular matrix, culture systems that can recapitulate the broader extracellular context of the tumor microenvironment (including pH and temperature) remain comparably unexplored, partially due to the difficulty in independently tuning these parameters. Here, we investigate a self-assembled polypeptide network hydrogel as a cell culture platform and demonstrate that the culture parameters, including the substrate stiffness, extracellular pH and temperature, can be independently controlled. We then use this biomaterial as a cell culture substrate to assess the effect of stiffness, pH and temperature on Suit2 cells, a pancreatic cancer cell line, and demonstrate that these microenvironmental factors can regulate two critical transcription factors in cancer: yes-associated protein 1 (YAP) and hypoxia inducible factor (HIF-1A).

4.
Front Cell Dev Biol ; 8: 592628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195261

RESUMO

Mechanical forces regulate cell functions through multiple pathways. G protein-coupled estrogen receptor (GPER) is a seven-transmembrane receptor that is ubiquitously expressed across tissues and mediates the acute cellular response to estrogens. Here, we demonstrate an unidentified role of GPER as a cellular mechanoregulator. G protein-coupled estrogen receptor signaling controls the assembly of stress fibers, the dynamics of the associated focal adhesions, and cell polarization via RhoA GTPase (RhoA). G protein-coupled estrogen receptor activation inhibits F-actin polymerization and subsequently triggers a negative feedback that transcriptionally suppresses the expression of monomeric G-actin. Given the broad expression of GPER and the range of cytoskeletal changes modulated by this receptor, our findings position GPER as a key player in mechanotransduction.

5.
Methods Cell Biol ; 157: 99-122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32334722

RESUMO

Metastasis accounts for nearly 90% of all cancer associated mortalities. A hallmark of metastasis in malignancies of epithelial origin such as in the pancreas and breast, is invasion of the basement membrane (BM). While various in vitro assays have been developed to address questions regarding the invasiveness of tumors with relation to the BM, most fail to recapitulate a physiologically accurate cell-membrane interface. Here, we introduce a new 3D in vitro assay that uses the mouse mesenteric tissue as a mimic for the epithelial BM. We describe a simple, cost-effective protocol for extraction and setup of the assay, and show that the mesentery is a physiologically accurate model of the BM in its key components-type IV collagen, laminin-1 and perlecan. Furthermore, we introduce a user-friendly quantification tool, Q-Pi, which allows the 3D reconstruction, visualization and quantification of invasion at a cellular level. Overall, we demonstrate that this invasion assay provides a physiologically accurate tool to investigate BM invasion.


Assuntos
Membrana Basal/citologia , Bioensaio/métodos , Mesentério/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Membrana Basal/metabolismo , Movimento Celular , Células Epiteliais , Epitélio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Camundongos , Invasividade Neoplásica/patologia
6.
Nat Mater ; 19(6): 669-678, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31907416

RESUMO

Extensive research over the past decades has identified integrins to be the primary transmembrane receptors that enable cells to respond to external mechanical cues. We reveal here a mechanism whereby syndecan-4 tunes cell mechanics in response to localized tension via a coordinated mechanochemical signalling response that involves activation of two other receptors: epidermal growth factor receptor and ß1 integrin. Tension on syndecan-4 induces cell-wide activation of the kindlin-2/ß1 integrin/RhoA axis in a PI3K-dependent manner. Furthermore, syndecan-4-mediated tension at the cell-extracellular matrix interface is required for yes-associated protein activation. Extracellular tension on syndecan-4 triggers a conformational change in the cytoplasmic domain, the variable region of which is indispensable for the mechanical adaptation to force, facilitating the assembly of a syndecan-4/α-actinin/F-actin molecular scaffold at the bead adhesion. This mechanotransduction pathway for syndecan-4 should have immediate implications for the broader field of mechanobiology.


Assuntos
Integrinas/metabolismo , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Sindecana-4/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Células Cultivadas , Humanos , Integrinas/genética , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Sindecana-4/genética , Proteína rhoA de Ligação ao GTP/genética
7.
Cancers (Basel) ; 12(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991740

RESUMO

The invasive properties of cancer cells are intimately linked to their mechanical phenotype, which can be regulated by intracellular biochemical signalling. Cell contractility, induced by mechanotransduction of a stiff fibrotic matrix, and the epithelial-mesenchymal transition (EMT) promote invasion. Metastasis involves cells pushing through the basement membrane into the stroma-both of which are altered in composition with cancer progression. Agonists of the G protein-coupled oestrogen receptor (GPER), such as tamoxifen, have been largely used in the clinic, and interest in GPER, which is abundantly expressed in tissues, has greatly increased despite a lack of understanding regarding the mechanisms which promote its multiple effects. Here, we show that specific activation of GPER inhibits EMT, mechanotransduction and cell contractility in cancer cells via the GTPase Ras homolog family member A (RhoA). We further show that GPER activation inhibits invasion through an in vitro basement membrane mimic, similar in structure to the pancreatic basement membrane that we reveal as an asymmetric bilayer, which differs in composition between healthy and cancer patients.

8.
Sci Rep ; 9(1): 7299, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086224

RESUMO

Liver fibrosis is characterised by a dense and highly cross-linked extracellular matrix (ECM) which promotes progression of diseases such as hepatocellular carcinoma. The fibrotic microenvironment is characterised by an increased stiffness, with rigidity associated with disease progression. External stiffness is known to promote hepatic stellate cell (HSC) activation through mechanotransduction, leading to increased secretion of ECM components. HSCs are key effector cells which maintain the composition of the ECM in health and disease, not only by regulating secretion of ECM proteins such as collagen, but also ECM-degrading enzymes called matrix metalloproteinases (MMPs) and their inhibitors (TIMPs). Uninhibited MMPs degrade ECM proteins to reduce external rigidity. Using fibronectin-coated polyacrylamide gels to alter substrate rigidity without altering ligand density, we show that fibrotic rigidities downregulate MMP-9 expression and secretion, and also upregulate secretion of TIMP-1, though not its expression. Using tissue immunofluorescence studies, we also report that the expression of MMP-9 is significantly decreased in activated HSCs in fibrotic tissues associated with hepatocellular carcinoma. This suggests the presence of a mechanical network that allows HSCs to maintain a fibrotic ECM, with external rigidity providing feedback which affects MMP-9 and TIMP-1 secretion, which may become dysregulated in fibrosis.


Assuntos
Carcinoma Hepatocelular/patologia , Matriz Extracelular/patologia , Células Estreladas do Fígado/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Metaloproteinase 9 da Matriz/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Humanos , Fígado/citologia , Fígado/patologia , Cultura Primária de Células , RNA Interferente Pequeno/metabolismo , Análise Serial de Tecidos , Inibidor Tecidual de Metaloproteinase-1/genética
9.
Oncogene ; 38(16): 2910-2922, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30575816

RESUMO

Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Tamoxifeno/farmacologia , Linhagem Celular , Estrogênios/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
10.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538116

RESUMO

The tumor microenvironment is fundamental to cancer progression, and the influence of its mechanical properties is increasingly being appreciated. Tamoxifen has been used for many years to treat estrogen-positive breast cancer. Here we report that tamoxifen regulates the level and activity of collagen cross-linking and degradative enzymes, and hence the organization of the extracellular matrix, via a mechanism involving both the G protein-coupled estrogen receptor (GPER) and hypoxia-inducible factor-1 alpha (HIF-1A). We show that tamoxifen reduces HIF-1A levels by suppressing myosin-dependent contractility and matrix stiffness mechanosensing. Tamoxifen also downregulates hypoxia-regulated genes and increases vascularization in PDAC tissues. Our findings implicate the GPER/HIF-1A axis as a master regulator of peri-tumoral stromal remodeling and the fibrovascular tumor microenvironment and offer a paradigm shift for tamoxifen from a well-established drug in breast cancer hormonal therapy to an alternative candidate for stromal targeting strategies in PDAC and possibly other cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Tamoxifeno/administração & dosagem , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Miosinas/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
11.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30538117

RESUMO

The mechanical properties of the tumor microenvironment are emerging as attractive targets for the development of therapies. Tamoxifen, an agonist of the G protein-coupled estrogen receptor (GPER), is widely used to treat estrogen-positive breast cancer. Here, we show that tamoxifen mechanically reprograms the tumor microenvironment through a newly identified GPER-mediated mechanism. Tamoxifen inhibits the myofibroblastic differentiation of pancreatic stellate cells (PSCs) in the tumor microenvironment of pancreatic cancer in an acto-myosin-dependent manner via RhoA-mediated contractility, YAP deactivation, and GPER signaling. This hampers the ability of PSCs to remodel the extracellular matrix and to promote cancer cell invasion. Tamoxifen also reduces the recruitment and polarization to the M2 phenotype of tumor-associated macrophages. Our results highlight GPER as a mechanical regulator of the tumor microenvironment that targets the three hallmarks of pancreatic cancer: desmoplasia, inflammation, and immune suppression. The well-established safety of tamoxifen in clinics may offer the possibility to redirect the singular focus of tamoxifen on the cancer cells to the greater tumor microenvironment and lead a new strategy of drug repurposing.


Assuntos
Neoplasias Pancreáticas/tratamento farmacológico , Células Estreladas do Pâncreas/efeitos dos fármacos , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética , Tamoxifeno/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Polaridade Celular/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Mecanotransdução Celular/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Estreladas do Pâncreas/patologia , Fosfoproteínas/genética , Fatores de Transcrição , Microambiente Tumoral/efeitos dos fármacos , Proteínas de Sinalização YAP
12.
Hepatology ; 69(2): 785-802, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30055117

RESUMO

Hepatic stellate cells (HSCs) are essential perisinusoidal cells in both healthy and diseased liver. HSCs modulate extracellular matrix (ECM) homeostasis when quiescent, but in liver fibrosis, HSCs become activated and promote excess deposition of ECM molecules and tissue stiffening via force generation and mechanosensing. In hepatocellular carcinoma (HCC), activated HSCs infiltrate the stroma and migrate to the tumor core to facilitate paracrine signaling with cancer cells. Because the function of HSCs is known to be modulated by retinoids, we investigated the expression profile of retinoic acid receptor beta (RAR-ß) in patients with cirrhosis and HCC, as well as the effects of RAR-ß activation in HSCs. We found that RAR-ß expression is significantly reduced in cirrhotic and HCC tissues. Using a comprehensive set of biophysical methods combined with cellular and molecular biology, we have elucidated the biomechanical mechanism by which all trans-retinoic acid promotes HSC deactivation via RAR-ß-dependent transcriptional downregulation of myosin light chain 2 expression. Furthermore, this also abrogated mechanically driven migration toward stiffer substrates. Conclusion: Targeting mechanotransduction in HSCs at the transcriptional level may offer therapeutic options for a range of liver diseases.


Assuntos
Carcinoma Hepatocelular/metabolismo , Células Estreladas do Fígado/fisiologia , Cirrose Hepática Experimental/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores do Ácido Retinoico/metabolismo , Animais , Miosinas Cardíacas/metabolismo , Estudos de Casos e Controles , Movimento Celular , Microambiente Celular , Proteínas da Matriz Extracelular/metabolismo , Humanos , Mecanotransdução Celular , Camundongos , Cadeias Leves de Miosina/metabolismo , Cultura Primária de Células , Tretinoína
13.
PLoS Biol ; 16(7): e2005599, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30028837

RESUMO

The mechanical unfolding of proteins is a cellular mechanism for force transduction with potentially broad implications in cell fate. Despite this, the mechanism by which protein unfolding elicits differential downstream signalling pathways remains poorly understood. Here, we used protein engineering, atomic force microscopy, and biophysical tools to delineate how protein unfolding controls cell mechanics. Deleted in liver cancer 1 (DLC1) is a negative regulator of Ras homolog family member A (RhoA) and cell contractility that regulates cell behaviour when localised to focal adhesions bound to folded talin. Using a talin mutant resistant to force-induced unfolding of R8 domain, we show that talin unfolding determines DLC1 downstream signalling and, consequently, cell mechanics. We propose that this new mechanism of mechanotransduction may have implications for a wide variety of associated cellular processes.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Mecanotransdução Celular , Talina/química , Talina/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Movimento Celular , Dissulfetos/metabolismo , Adesões Focais/metabolismo , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Desdobramento de Proteína , Relação Estrutura-Atividade
14.
Sci Rep ; 7(1): 2506, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566691

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) is an aggressive malignancy characterised by the presence of extensive desmoplasia, thought to be responsible for the poor response of patients to systemic therapies. Pancreatic stellate cells (PSCs) are key mediators in the production of this fibrotic stroma, upon activation transitioning to a myofibroblast-like, high matrix secreting phenotype. Given their importance in disease progression, characterisation of PSC activation has been extensive, however one aspect that has been overlooked is the mechano-sensing properties of the cell. Here, through the use of a physiomimetic system that recapitulates the mechanical microenvironment found within healthy and fibrotic pancreas, we demonstrate that matrix stiffness regulates activation and mechanotaxis in PSCs. We show the ability of PSCs to undergo phenotypic transition solely as a result of changes in extracellular matrix stiffness, whilst observing the ability of PSCs to durotactically respond to stiffness variations within their local environment. Our findings implicate the mechanical microenvironment as a potent contributor to PDAC progression and survival via induction of PSC activation and fibrosis, suggesting that direct mechanical reprogramming of PSCs may be a viable alternative in the treatment of this lethal disease.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Proliferação de Células/genética , Microambiente Tumoral/genética , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Reprogramação Celular/genética , Colágeno/farmacologia , Progressão da Doença , Combinação de Medicamentos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Laminina/farmacologia , Células Estreladas do Pâncreas/efeitos dos fármacos , Células Estreladas do Pâncreas/patologia , Cultura Primária de Células , Proteoglicanas/farmacologia , Especificidade por Substrato
15.
Nat Commun ; 7: 12630, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27600527

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a dismal survival rate. Persistent activation of pancreatic stellate cells (PSCs) can perturb the biomechanical homoeostasis of the tumour microenvironment to favour cancer cell invasion. Here we report that ATRA, an active metabolite of vitamin A, restores mechanical quiescence in PSCs via a mechanism involving a retinoic acid receptor beta (RAR-ß)-dependent downregulation of actomyosin (MLC-2) contractility. We show that ATRA reduces the ability of PSCs to generate high traction forces and adapt to extracellular mechanical cues (mechanosensing), as well as suppresses force-mediated extracellular matrix remodelling to inhibit local cancer cell invasion in 3D organotypic models. Our findings implicate a RAR-ß/MLC-2 pathway in peritumoural stromal remodelling and mechanosensory-driven activation of PSCs, and further suggest that mechanical reprogramming of PSCs with retinoic acid derivatives might be a viable alternative to stromal ablation strategies for the treatment of PDAC.


Assuntos
Invasividade Neoplásica/prevenção & controle , Células Estreladas do Pâncreas/efeitos dos fármacos , Tretinoína/farmacologia , Carcinoma Ductal Pancreático , Adesão Celular , Proliferação de Células , Adesões Focais , Humanos , Mecanotransdução Celular/efeitos dos fármacos , Células Estreladas do Pâncreas/fisiologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA