Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38076912

RESUMO

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A ß ; in plaques and in CAA; further, recombinant MDK and PTN enhance A ß ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A ß 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A ß ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

2.
Alzheimers Res Ther ; 12(1): 61, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430033

RESUMO

BACKGROUND: γ-Secretase is a multiprotein protease that cleaves amyloid protein precursor (APP) and other type I transmembrane proteins. It has two catalytic subunits, presenilins 1 and 2 (PS1 and 2). In our previous report, we observed subtle differences in PS1- and PS2-mediated cleavages of select substrates and slightly different potencies of PS1 versus PS2 inhibition for select γ-secretase inhibitors (GSIs) on various substrates. In this study, we investigated whether γ-secretase modulators (GSMs) and inverse γ-secretase modulators (iGSMs) modulate γ-secretase processivity using multiple different substrates. We next used HEK 293T cell lines in which PSEN1 or PSEN2 was selectively knocked out to investigate processivity and response to GSMs and iGSMs. METHODS: For cell-free γ-secretase cleavage assay, recombinant substrates were incubated with CHAPSO-solubilized CHO or HEK 293T cell membrane with GSMs or iGSMs in suitable buffer. For cell-based assay, cDNA encoding substrates were transfected into HEK 293T cells. Cells were then treated with GSMs or iGSMs, and conditioned media were collected. Aß and Aß-like peptide production from cell-free and cell-based assay were measured by ELISA and mass spectrometry. RESULT: These studies demonstrated that GSMs are highly selective for effects on APP, whereas iGSMs have a more promiscuous effect on many substrates. Surprisingly, iGSMs actually appear to act as like GSIs on select substrates. The data with PSEN1 or PSEN2 knocked out HEK 293T reveal that PS1 has higher processivity and response to GSMs than PS2, but PS2 has higher response to iGSM. CONCLUSION: Collectively, these data indicate that GSMs are likely to have limited target-based toxicity. In addition, they show that iGSMs may act as substrate-selective GSIs providing a potential new route to identify leads for substrate-selective inhibitors of certain γ-secretase-mediated signaling events. With growing concerns that long-term ß-secretase inhibitor is limited by target-based toxicities, such data supports continued development of GSMs as AD prophylactics.


Assuntos
Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Células HEK293 , Humanos , Presenilina-2/genética , Transdução de Sinais
3.
J Exp Med ; 216(11): 2479-2491, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31467037

RESUMO

Hypothalamic-pituitary-adrenal (HPA) axis dysfunction contributes to numerous human diseases and disorders. We developed a high-affinity monoclonal antibody, CTRND05, targeting corticotropin-releasing factor (CRF). In mice, CTRND05 blocks stress-induced corticosterone increases, counteracts effects of chronic variable stress, and induces other phenotypes consistent with suppression of the HPA axis. CTRND05 induces skeletal muscle hypertrophy and increases lean body mass, effects not previously reported with small-molecule HPA-targeting pharmacologic agents. Multiorgan transcriptomics demonstrates broad HPA axis target engagement through altering levels of known HPA-responsive transcripts such as Fkbp5 and Myostatin and reveals novel HPA-responsive pathways such as the Apelin-Apelin receptor system. These studies demonstrate the therapeutic potential of CTRND05 as a suppressor of the HPA axis and serve as an exemplar of a potentially broader approach to target neuropeptides with immunotherapies, as both pharmacologic tools and novel therapeutics.


Assuntos
Anticorpos Monoclonais/farmacologia , Hormônio Liberador da Corticotropina/antagonistas & inibidores , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Corticosterona/imunologia , Corticosterona/metabolismo , Hormônio Liberador da Corticotropina/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Sistema Hipotálamo-Hipofisário/imunologia , Sistema Hipotálamo-Hipofisário/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo , Sistema Hipófise-Suprarrenal/imunologia , Sistema Hipófise-Suprarrenal/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Estresse Fisiológico/imunologia
4.
J Biol Chem ; 294(29): 11276-11285, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31167792

RESUMO

Presenilins 1 and 2 (PS1 and 2) are the catalytic subunits of γ-secretase, a multiprotein protease that cleaves amyloid protein precursor and other type I transmembrane proteins. Previous studies with mouse models or cells have indicated differences in PS1 and PS2 functions. We have recently reported that clinical γ-secretase inhibitors (GSIs), initially developed to manage Alzheimer's disease and now being considered for other therapeutic interventions, are both pharmacologically and functionally distinct. Here, using CRISPR/Cas9-based gene editing, we established human HEK 293T cell lines in which endogenous PS1, PS2, or both have been knocked out. Using these knockout lines to examine differences in PS1- and PS2-mediated cleavage events, we confirmed that PS2 generates more intracellular ß-amyloid than does PS1. Moreover, we observed subtle differences in PS1- and PS2-mediated cleavages of select substrates. In exploring the question of whether differences in activity among clinical GSIs could be attributed to differential inhibition of PS1 or PS2, we noted that select GSIs inhibit PS1 and PS2 activities on specific substrates with slightly different potencies. We also found that endoproteolysis of select PS1 FAD-linked variants in human cells is more efficient than what has been previously reported for mouse cell lines. Overall, these results obtained with HEK293T cells suggest that selective PS1 or PS2 inhibition by a given GSI does not explain the previously observed differences in functional and pharmacological properties among various GSIs.


Assuntos
Presenilina-1/fisiologia , Presenilina-2/fisiologia , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Hidrólise , Camundongos , Presenilina-1/genética , Presenilina-2/genética , Especificidade por Substrato
5.
Cell Rep ; 27(5): 1345-1355.e6, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31042463

RESUMO

Amyloid precursor protein (APP) and its metabolites play key roles in Alzheimer's disease (AD) pathophysiology. Whereas short amyloid-ß (Aß) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail. We investigated whether sustained APP signaling during brain development might favor neuronal plasticity and memory process through a direct interaction with the heterotrimeric G-protein subunit GαS (stimulatory G-protein alpha subunit). Our results reveal that APP possesses autonomous regulatory capacity within its intracellular domain that promotes APP cell surface residence, precludes Aß production, facilitates axodendritic development, and preserves cellular substrates of memory. Altogether, these events contribute to strengthening cognitive functions and are sufficient to modify the course of AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Memória , Neurogênese , Transdução de Sinais , Precursor de Proteína beta-Amiloide/química , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Células Cultivadas , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal , Domínios Proteicos
6.
J Exp Med ; 215(1): 283-301, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29208777

RESUMO

Processing of amyloid-ß (Aß) precursor protein (APP) by γ-secretase produces multiple species of Aß: Aß40, short Aß peptides (Aß37-39), and longer Aß peptides (Aß42-43). γ-Secretase modulators, a class of Alzheimer's disease therapeutics, reduce production of the pathogenic Aß42 but increase the relative abundance of short Aß peptides. To evaluate the pathological relevance of these peptides, we expressed Aß36-40 and Aß42-43 in Drosophila melanogaster to evaluate inherent toxicity and potential modulatory effects on Aß42 toxicity. In contrast to Aß42, the short Aß peptides were not toxic and, when coexpressed with Aß42, were protective in a dose-dependent fashion. In parallel, we explored the effects of recombinant adeno-associated virus-mediated expression of Aß38 and Aß40 in mice. When expressed in nontransgenic mice at levels sufficient to drive Aß42 deposition, Aß38 and Aß40 did not deposit or cause behavioral alterations. These studies indicate that treatments that lower Aß42 by raising the levels of short Aß peptides could attenuate the toxic effects of Aß42.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Amiloide/genética , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Drosophila melanogaster , Olho/metabolismo , Olho/patologia , Olho/ultraestrutura , Feminino , Locomoção , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fenótipo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo
7.
FASEB J ; 27(9): 3775-85, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23716494

RESUMO

Aggregation and accumulation of Aß42 play an initiating role in Alzheimer's disease (AD); thus, selective lowering of Aß42 by γ-secretase modulators (GSMs) remains a promising approach to AD therapy. Based on evidence suggesting that steroids may influence Aß production, we screened 170 steroids at 10 µM for effects on Aß42 secreted from human APP-overexpressing Chinese hamster ovary cells. Many acidic steroids lowered Aß42, whereas many nonacidic steroids actually raised Aß42. Studies on the more potent compounds showed that Aß42-lowering steroids were bonafide GSMs and Aß42-raising steroids were inverse GSMs. The most potent steroid GSM identified was 5ß-cholanic acid (EC50=5.7 µM; its endogenous analog lithocholic acid was virtually equipotent), and the most potent inverse GSM identified was 4-androsten-3-one-17ß-carboxylic acid ethyl ester (EC50=6.25 µM). In addition, we found that both estrogen and progesterone are weak inverse GSMs with further complex effects on APP processing. These data suggest that certain endogenous steroids may have the potential to act as GSMs and add to the evidence that cholesterol, cholesterol metabolites, and other steroids may play a role in modulating Aß production and thus risk for AD. They also indicate that acidic steroids might serve as potential therapeutic leads for drug optimization/development.


Assuntos
Secretases da Proteína Precursora do Amiloide/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Esteroides/química , Esteroides/farmacologia , Animais , Células CHO , Linhagem Celular , Colesterol/farmacologia , Cricetinae , Cricetulus , Ensaio de Imunoadsorção Enzimática , Estrogênios/farmacologia , Humanos , Espectrometria de Massas , Progesterona/farmacologia
8.
J Med Chem ; 55(23): 10749-65, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23181502

RESUMO

Inspired by marine cyanobacterial natural products, we synthesized modified peptides with a central statine-core unit, characteristic for aspartic protease inhibition. A series of tasiamide B analogues inhibited BACE1, a therapeutic target in Alzheimer's disease. We probed the stereospecificity of target engagement and determined additional structure-activity relationships with respect to BACE1 and related aspartic proteases, cathepsins D and E. We cocrystallized selected inhibitors with BACE1 to reveal the structural basis for the activity. Hybrid molecules that combine features of tasiamide B and an isophthalic acid moiety-containing sulfonamide showed nanomolar cellular activity. Compounds were screened in a series of rigorous complementary cell-based assays. We measured secreted APP ectodomain (sAPPß), membrane bound carboxyl terminal fragment (CTF), levels of ß-amyloid (Aß) peptides and selectivity for ß-secretase (BACE1) over γ-secretase. Prioritized compounds showed reasonable stability in vitro and in vivo, and our most potent inhibitor showed efficacy in reducing Aß levels in the rodent brain.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Proteases/química , Cianobactérias/química , Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Desenho de Fármacos , Modelos Moleculares , Sondas Moleculares , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade
9.
J Biol Chem ; 286(46): 39804-12, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21868378

RESUMO

γ-Secretase is a multiprotein intramembrane cleaving aspartyl protease (I-CLiP) that catalyzes the final cleavage of the amyloid ß precursor protein (APP) to release the amyloid ß peptide (Aß). Aß is the primary component of senile plaques in Alzheimer's disease (AD), and its mechanism of production has been studied intensely. γ-Secretase executes multiple cleavages within the transmembrane domain of APP, with cleavages producing Aß and the APP intracellular domain (AICD), referred to as γ and ε, respectively. The heterogeneous nature of the γ cleavage that produces various Aß peptides is highly relevant to AD, as increased production of Aß 1-42 is genetically and biochemically linked to the development of AD. We have identified an amino acid in the juxtamembrane region of APP, lysine 624, on the basis of APP695 numbering (position 28 relative to Aß) that plays a critical role in determining the final length of Aß peptides released by γ-secretase. Mutation of this lysine to alanine (K28A) shifts the primary site of γ-secretase cleavage from 1-40 to 1-33 without significant changes to ε cleavage. These results further support a model where ε cleavage occurs first, followed by sequential proteolysis of the remaining transmembrane fragment, but extend these observations by demonstrating that charged residues at the luminal boundary of the APP transmembrane domain limit processivity of γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Lisina/metabolismo , Proteólise , Secretases da Proteína Precursora do Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Células HEK293 , Humanos , Lisina/genética , Estrutura Terciária de Proteína
10.
Nature ; 453(7197): 925-9, 2008 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-18548070

RESUMO

Selective lowering of Abeta42 levels (the 42-residue isoform of the amyloid-beta peptide) with small-molecule gamma-secretase modulators (GSMs), such as some non-steroidal anti-inflammatory drugs, is a promising therapeutic approach for Alzheimer's disease. To identify the target of these agents we developed biotinylated photoactivatable GSMs. GSM photoprobes did not label the core proteins of the gamma-secretase complex, but instead labelled the beta-amyloid precursor protein (APP), APP carboxy-terminal fragments and amyloid-beta peptide in human neuroglioma H4 cells. Substrate labelling was competed by other GSMs, and labelling of an APP gamma-secretase substrate was more efficient than a Notch substrate. GSM interaction was localized to residues 28-36 of amyloid-beta, a region critical for aggregation. We also demonstrate that compounds known to interact with this region of amyloid-beta act as GSMs, and some GSMs alter the production of cell-derived amyloid-beta oligomers. Furthermore, mutation of the GSM binding site in the APP alters the sensitivity of the substrate to GSMs. These findings indicate that substrate targeting by GSMs mechanistically links two therapeutic actions: alteration in Abeta42 production and inhibition of amyloid-beta aggregation, which may synergistically reduce amyloid-beta deposition in Alzheimer's disease. These data also demonstrate the existence and feasibility of 'substrate targeting' by small-molecule effectors of proteolytic enzymes, which if generally applicable may significantly broaden the current notion of 'druggable' targets.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Precursor de Proteína beta-Amiloide/genética , Animais , Anti-Inflamatórios não Esteroides/química , Sítios de Ligação/efeitos dos fármacos , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Feminino , Humanos , Camundongos , Ligação Proteica/efeitos dos fármacos , Receptores Notch/genética , Receptores Notch/metabolismo , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA