Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bone Rep ; 12: 100241, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31921941

RESUMO

BACKGROUND: Dietary protein restriction is emerging as an alternative approach to treat obesity and glucose intolerance because it markedly increases plasma fibroblast growth factor 21 (FGF21) concentrations. Similarly, dietary restriction of methionine is known to mimic metabolic effects of energy and protein restriction with FGF21 as a required mechanism. However, dietary protein has been shown to be required for normal bone growth, though there is conflicting evidence as to the influence of dietary protein restriction on bone remodeling. The purpose of the current study was to evaluate the effect of dietary protein and methionine restriction on bone in lean and obese mice, and clarify whether FGF21 and general control nonderepressible 2 (GCN2) kinase, that are part of a novel endocrine pathway implicated in the detection of protein restriction, influence the effect of dietary protein restriction on bone. METHODS: Adult wild-type (WT) or Fgf21 KO mice were fed a normal protein (18 kcal%; CON) or low protein (4 kcal%; LP) diet for 2 or 27 weeks. In addition, adult WT or Gcn2 KO mice were fed a CON or LP diet for 27 weeks. Young New Zealand obese (NZO) mice were placed on high-fat diets that provided protein at control (16 kcal%; CON), low levels (4 kcal%) in a high-carbohydrate (LP/HC) or high-fat (LP/HF) regimen, or on high-fat diets (protein, 16 kcal%) that provided methionine at control (0.86%; CON-MR) or low levels (0.17%; MR) for up to 9 weeks. Long bones from the hind limbs of these mice were collected and evaluated with micro-computed tomography (µCT) for changes in trabecular and cortical architecture and mass. RESULTS: In WT mice the 27-week LP diet significantly reduced cortical bone, and this effect was enhanced by deletion of Fgf21 but not Gcn2. This decrease in bone did not appear after 2 weeks on the LP diet. In addition, Fgf21 KO mice had significantly less bone than their WT counterparts. In obese NZO mice dietary protein and methionine restriction altered bone architecture. The changes were mediated by FGF21 due to methionine restriction in the presence of cystine, which did not increase plasma FGF21 levels and did not affect bone architecture. CONCLUSIONS: This study provides direct evidence of a reduction in bone following long-term dietary protein restriction in a mouse model, effects that appear to be mediated by FGF21.

2.
J Nutr Biochem ; 63: 109-116, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359860

RESUMO

Dipeptidyl peptidase 4 (DPP4) is known to be elevated in metabolic disturbances such as obesity, type 2 diabetes and fatty liver disease. Lowering DPP4 concentration by pharmacological inhibition improves glucose homeostasis and exhibits beneficial effects to reduce hepatic fat content. As factors regulating the endogenous expression of Dpp4 are unknown, the aim of this study was to examine whether the Dpp4 expression is epigenetically regulated in response to dietary components. Primary hepatocytes were treated with different macronutrients, and Dpp4 mRNA levels and DPP4 activity were evaluated. Moreover, dietary low-protein intervention was conducted in New Zealand obese (NZO) mice, and subsequently, effects on Dpp4 expression, methylation as well as plasma concentration and activity were determined. Our results indicate that Dpp4 mRNA expression is mediated by DNA methylation in several tissues. We therefore consider the Dpp4 southern shore as tissue differentially methylated region. Amino acids increased Dpp4 expression in primary hepatocytes, whereas glucose and fatty acids were without effect. Dietary protein restriction in NZO mice increased Dpp4 DNA methylation in liver leading to diminished Dpp4 expression and consequently to lowered plasma DPP4 activity. We conclude that protein restriction in the adolescent and adult states is a sufficient strategy to reduce DPP4 which in turn contributes to improve glucose homeostasis.


Assuntos
Proteínas Alimentares/farmacologia , Dipeptidil Peptidase 4/genética , Epigênese Genética , Aminoácidos/farmacologia , Animais , Ilhas de CpG , Metilação de DNA/efeitos dos fármacos , Dipeptidil Peptidase 4/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos
3.
Mol Metab ; 6(10): 1254-1263, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031724

RESUMO

OBJECTIVE: Increased hepatic expression of dipeptidyl peptidase 4 (DPP4) is associated with non-alcoholic fatty liver disease (NAFLD). Whether this is causative for the development of NAFLD is not yet clarified. Here we investigate the effect of hepatic DPP4 overexpression on the development of liver steatosis in a mouse model of diet-induced obesity. METHODS: Plasma DPP4 activity of subjects with or without NAFLD was analyzed. Wild-type (WT) and liver-specific Dpp4 transgenic mice (Dpp4-Liv-Tg) were fed a high-fat diet and characterized for body weight, body composition, hepatic fat content and insulin sensitivity. In vitro experiments on HepG2 cells and primary mouse hepatocytes were conducted to validate cell autonomous effects of DPP4 on lipid storage and insulin sensitivity. RESULTS: Subjects suffering from insulin resistance and NAFLD show an increased plasma DPP4 activity when compared to healthy controls. Analysis of Dpp4-Liv-Tg mice revealed elevated systemic DPP4 activity and diminished active GLP-1 levels. They furthermore show increased body weight, fat mass, adipose tissue inflammation, hepatic steatosis, liver damage and hypercholesterolemia. These effects were accompanied by increased expression of PPARγ and CD36 as well as severe insulin resistance in the liver. In agreement, treatment of HepG2 cells and primary hepatocytes with physiological concentrations of DPP4 resulted in impaired insulin sensitivity independent of lipid content. CONCLUSIONS: Our results give evidence that elevated expression of DPP4 in the liver promotes NAFLD and insulin resistance. This is linked to reduced levels of active GLP-1, but also to auto- and paracrine effects of DPP4 on hepatic insulin signaling.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Resistência à Insulina/fisiologia , Fígado/enzimologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Animais , Dipeptidil Peptidase 4/sangue , Dipeptidil Peptidase 4/genética , Modelos Animais de Doenças , Feminino , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Insulina/sangue , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/enzimologia , Obesidade/sangue , Obesidade/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 307(3): R310-20, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24898843

RESUMO

Intracerebroventricular injections of leucine are sufficient to suppress food intake, but it remains unclear whether brain leucine signaling represents a physiological signal of protein balance. We tested whether variations in dietary and circulating levels of leucine, or all three branched-chain amino acids (BCAAs), contribute to the detection of reduced dietary protein. Of the essential amino acids (EAAs) tested, only intracerebroventricular injection of leucine (10 µg) was sufficient to suppress food intake. Isocaloric low- (9% protein energy; LP) or normal- (18% protein energy) protein diets induced a divergence in food intake, with an increased consumption of LP beginning on day 2 and persisting throughout the study (P < 0.05). Circulating BCAA levels were reduced the day after LP diet exposure, but levels subsequently increased and normalized by day 4, despite persistent hyperphagia. Brain BCAA levels as measured by microdialysis on day 2 of diet exposure were reduced in LP rats, but this effect was most prominent postprandially. Despite these diet-induced changes in BCAA levels, reducing dietary leucine or total BCAAs independently from total protein was neither necessary nor sufficient to induce hyperphagia, while chronic infusion of EAAs into the brain of LP rats failed to consistently block LP-induced hyperphagia. Collectively, these data suggest that circulating BCAAs are transiently reduced by dietary protein restriction, but variations in dietary or brain BCAAs alone do not explain the hyperphagia induced by a low-protein diet.


Assuntos
Encéfalo/efeitos dos fármacos , Dieta com Restrição de Proteínas , Proteínas Alimentares/farmacologia , Ingestão de Alimentos/efeitos dos fármacos , Leucina/farmacologia , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , Animais , Encéfalo/metabolismo , Dieta com Restrição de Proteínas/efeitos adversos , Ingestão de Alimentos/fisiologia , Hiperfagia/etiologia , Injeções Intraventriculares , Leucina/administração & dosagem , Masculino , Modelos Animais , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
Appetite ; 54(3): 450-5, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20416348

RESUMO

Although the phenomenon of beta-hydroxybutyric acid (BHBA) impact on satiety and thermogenesis has been described in the past decades, the underlying molecular mechanisms involved remain unresolved. Other metabolites such as glucose, fatty or branched chain amino acids are known to activate the AMP kinase pathway leading to an increase of anorexic and a decrease of orexigenic neuropeptides in the hypothalamus, one of the central regulators of energy homeostasis. Since BHBA is utilized as an energy source by the brain particularly in suckling newborns and under starving conditions, it is supposed to be a further central signal and energy providing substrate involved in the regulation of food intake. Moreover, BHBA might present a therapeutic approach for treating neuronal diseases because of its neuroprotective properties. Therefore, the purpose of this review is to summarize the known central effects of BHBA and to point out the importance of the identification of cellular pathways triggered in response to BHBA.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Metabolismo Energético/fisiologia , Ácido 3-Hidroxibutírico/sangue , Trifosfato de Adenosina/biossíntese , Animais , Animais Lactentes/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Ingestão de Alimentos , Metabolismo Energético/efeitos dos fármacos , Humanos , Cetose , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fármacos Neuroprotetores , Hormônios Hipofisários/metabolismo , Transdução de Sinais , Inanição/metabolismo , Termogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA