Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Paediatr Neurol ; 49: 60-65, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377647

RESUMO

Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.


Assuntos
Acil-CoA Desidrogenase/deficiência , Cardiomiopatias , Carnitina O-Palmitoiltransferase/deficiência , Erros Inatos do Metabolismo Lipídico , Erros Inatos do Metabolismo , Proteína Mitocondrial Trifuncional/deficiência , Triagem Neonatal , Rabdomiólise , Humanos , Recém-Nascido , Estudos Retrospectivos , Masculino , Feminino , Triagem Neonatal/métodos , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/complicações , Bélgica/epidemiologia , Lactente , Síndrome Congênita de Insuficiência da Medula Óssea/complicações , Síndrome Congênita de Insuficiência da Medula Óssea/diagnóstico , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Ácidos Graxos/metabolismo , Pré-Escolar , Doenças Musculares/diagnóstico , Criança , Miopatias Mitocondriais/diagnóstico , Miopatias Mitocondriais/complicações , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/complicações , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/diagnóstico
2.
Eur J Pharmacol ; 546(1-3): 19-27, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16919623

RESUMO

Due to its high affinity for [(125)I]Angiotensin IV, cystinyl aminopeptidase (CAP) has recently been assigned as the 'angiotensin AT(4) receptor'. Since the aminopeptidase N (AP-N) activity is also susceptible to inhibition by Angiotensin IV, it might represent an additional target for this peptide. Based on [(125)I]Angiotensin IV binding and catalytic activity measurements, we compared the ligand interaction properties of recombinant human CAP and human AP-N. Both enzymes displayed distinct pharmacological profiles. Although their activity is inhibited by Angiotensin IV and LVV-hemorphin 7, both peptides are more potent CAP-inhibitors. On the other hand, substance P and l-methionine have a higher potency for AP-N. High affinity binding of [(125)I]Angiotensin IV to CAP occurs in the presence of chelators but not to AP-N in either the absence or presence of chelators. These differences were exploited to determine whether CAP and/or AP-N are present in different cell lines (CHO-K1, COS-7, HEK293, SK-N-MC and MDBK). We provide evidence that CAP predominates in these cell lines and that, comparatively, CHO-K1 cells display the highest level of this enzyme.


Assuntos
Angiotensina II/análogos & derivados , Antígenos CD13/metabolismo , Cistinil Aminopeptidase/metabolismo , Inibidores Enzimáticos/metabolismo , Receptores de Angiotensina/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Antagonistas de Receptores de Angiotensina , Animais , Ligação Competitiva , Antígenos CD13/antagonistas & inibidores , Antígenos CD13/genética , Células CHO , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cricetinae , Cricetulus , Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/genética , Cães , Inibidores Enzimáticos/farmacologia , Humanos , Radioisótopos do Iodo , Cinética , Ligantes , Ligação Proteica , Proteínas Recombinantes/metabolismo , Transfecção
3.
Biochem J ; 390(Pt 1): 351-7, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15885030

RESUMO

Cystinyl aminopeptidase has one Zn2+-binding motif and is a member of the M1 aminopeptidase family. Ion modulation of its catalytic activity was studied in membranes of CHO-K1 cells (Chinese-hamster ovary K1 cells) using L-leucine-p-nitroanilide as substrate. The planar bidentate chelators 1,10-phenanthroline and 2,2'-bipyridine inhibited the activity in a concentration-dependent manner with Hill slopes of 3.32+/-1.78 and 2.10+/-0.26 respectively. The acetic acid-containing chelators EDTA, EGTA and DTPA (diethylenetriamine-N,N,N',N'',N''-penta-acetic acid) weakly affected the activity, but they increased the potency of the planar chelators up to a limit, at which Hill slopes became close to unity. Moreover, competition between 1,10-phenanthroline and the substrate only took place in the presence of EDTA. These findings are compatible with a model in which the bidentate chelators inhibit enzyme activity by decreasing the free Zn2+ concentration. By removing a modulatory ion from an allosteric site at the enzyme, the acetic acid-containing chelators facilitate the direct interaction between the bidentate chelators and the catalytic Zn2+. The inhibitory effect of EDTA plus 1,10-phenanthroline could be completely reversed by Zn2+. Ca2+ and Mg2+ increased the potency of Zn2+ for this process. This is expected if they interact with the modulatory site to decrease the sensitivity of the enzyme towards 1,10-phenanthroline. Conversely, the bidendate chelators increased the high-affinity [125I]angiotensin IV binding to the membranes and this was potentiated by the acetic acid-containing chelators. These findings support the concept that high-affinity [125I]angiotensin IV binding, previously referred to as 'AT4 receptor binding', only occurs for the cystinyl aminopeptidase apoenzyme.


Assuntos
Cálcio/química , Cistinil Aminopeptidase/química , Magnésio/química , Metais/química , Zinco/química , 2,2'-Dipiridil/química , Animais , Sítios de Ligação , Células CHO , Cátions Bivalentes/química , Membrana Celular/química , Quelantes/química , Cricetinae , Cistinil Aminopeptidase/metabolismo , Ácido Edético/química , Ácido Egtázico/química , Ácido Pentético/química , Fenantrolinas/química , Ligação Proteica
4.
Biochem Pharmacol ; 68(5): 893-900, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15294452

RESUMO

Membranes of Chinese hamster ovary (CHO-K1) cells were used to study the opposite modulation of enzyme activity and [125I]Ang IV binding to cystinyl aminopeptidase (EC 3.4.11.3) by divalent cation chelators. Whereas ethylene diamine tetraacetic acid (EDTA) or ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA) alone only slightly affected the enzyme activity, 1,10-phenanthrolin (1,10-PHE) produced a complete and concentration-dependent inhibition. Interestingly EDTA (> or =0.05 mM) or EGTA (> or =0.15 mM) enhanced the inhibitory effect of 1,10-PHE. Two-site analysis of the corresponding inhibition curves revealed that EDTA and EGTA converted enzymes with low sensitivity towards 1,10-PHE into enzymes with high sensitivity. The combined inhibition by EDTA (0.1 mM) and 1,10-PHE (0.1 mM) could be prevented and reversed by addition of Zn2+ (at about 0.04-0.1 mM). In contrast, specific binding of [125I]Ang IV was enhanced in the presence of 1,10-PHE. Binding was only slightly affected by EDTA or EGTA alone. Furthermore, the stimulatory effect of 1,10-PHE was potentiated by EDTA (> or =0.05 mM) as well as EGTA (> or =0.15 mM). In the presence of EDTA (0.1 mM) and 1,10-PHE (0.1 mM), specific [125I]Ang IV binding was completely inhibited by Zn2+ (IC50= 39.7 +/- 6.2 microM). The present data show that divalent cations such as Zn2+ are essential for the enzyme activity of cystinyl aminopeptidase and inhibitory for [125I]Ang IV binding. Modulation of the effects of 1,10-PHE by other chelators such as EDTA or EGTA, suggests that, in addition to the binding site for zinc in the catalytic site, cystinyl aminopeptidase also bears a regulatory divalent cation binding site.


Assuntos
Angiotensina II/análogos & derivados , Cátions Bivalentes/farmacologia , Cistinil Aminopeptidase/metabolismo , Angiotensina II/metabolismo , Animais , Células CHO , Quelantes , Cricetinae , Ácido Edético/farmacologia , Ácido Egtázico/farmacologia , Feminino , Radioisótopos do Iodo , Fenantrolinas/farmacologia , Ensaio Radioligante
5.
Biochem Pharmacol ; 68(5): 885-92, 2004 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-15294451

RESUMO

The angiotensin II C-terminal hexapeptide fragment angiotensin IV (Ang IV) exerts central and cardiovascular effects. Cystinyl aminopeptidase (EC 3.4.11.3), a membrane-associated zinc-dependent metallopeptidase of the M1 family, has recently been found to display high affinity for Ang IV and it was proposed to represent the AT4 receptor. We present evidence for the presence of endogenous cystinyl aminopeptidase in membranes from Chinese hamster ovary (CHO-K1) cells by binding studies with [125I]Ang IV and by measuring the cleavage of L-leucine-p-nitroanilide. The equilibrium dissociation constant of [125I]Ang IV in saturation binding studies (KD= 0.90 nM) was similar to the value (KD= 0.70 nM) calculated from the association and dissociation rates. Binding was displaced with high potency by the "AT4 receptor" ligands (Ang IV > divalinal1-Ang IV approximately LVV-hemorphin-7 approximately LVV-hemorphin-6 > Ang (3-7) > Ang III > Ang (4-8)) but not by AT1/AT2 receptor antagonists. Enzymatic activity in CHO-K1 cell membranes was competitively inhibited upto 94% by Ang IV and other "AT4 receptor" ligands (Ang IV > Ang III approximately divalinal1-Ang IV approximately Ang (3-7) approximately LVV-hemorphin-7 > Ang (4-8) approximately LVV-hemorphin-6). High affinity binding of [125I]Ang IV required the presence of metal chelators and the ligands such as Ang IV and LVV-hemorphin-7 displayed higher potency in the binding studies as in the enzyme assay. This difference in potency varied from one peptide to another. These pharmacological properties match those previously reported for the recombinantly-expressed human cystinyl aminopeptidase in embryonal kidney cells.


Assuntos
Angiotensina II/análogos & derivados , Angiotensina II/metabolismo , Células CHO/enzimologia , Cistinil Aminopeptidase/metabolismo , Receptores de Angiotensina/metabolismo , Animais , Sítios de Ligação , Catálise , Membrana Celular/metabolismo , Cricetinae , Feminino , Radioisótopos do Iodo , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA