Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nat Commun ; 15(1): 7378, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39191740

RESUMO

The escape of mitochondrial double-stranded dsRNA (mt-dsRNA) into the cytosol has been recently linked to a number of inflammatory diseases. Here, we report that the release of mt-dsRNA into the cytosol is a general feature of senescent cells and a critical driver of their inflammatory secretome, known as senescence-associated secretory phenotype (SASP). Inhibition of the mitochondrial RNA polymerase, the dsRNA sensors RIGI and MDA5, or the master inflammatory signaling protein MAVS, all result in reduced expression of the SASP, while broadly preserving other hallmarks of senescence. Moreover, senescent cells are hypersensitized to mt-dsRNA-driven inflammation due to their reduced levels of PNPT1 and ADAR1, two proteins critical for mitigating the accumulation of mt-dsRNA and the inflammatory potency of dsRNA, respectively. We find that mitofusin MFN1, but not MFN2, is important for the activation of the mt-dsRNA/MAVS/SASP axis and, accordingly, genetic or pharmacologic MFN1 inhibition attenuates the SASP. Finally, we report that senescent cells within fibrotic and aged tissues present dsRNA foci, and inhibition of mitochondrial RNA polymerase reduces systemic inflammation associated to senescence. In conclusion, we uncover the mt-dsRNA/MAVS/MFN1 axis as a key driver of the SASP and we identify novel therapeutic strategies for senescence-associated diseases.


Assuntos
Senescência Celular , Citosol , Inflamação , Mitocôndrias , RNA de Cadeia Dupla , RNA de Cadeia Dupla/metabolismo , Humanos , Citosol/metabolismo , Mitocôndrias/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Animais , Proteína DEAD-box 58/metabolismo , Proteína DEAD-box 58/genética , Fenótipo Secretor Associado à Senescência , Helicase IFIH1 Induzida por Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Exorribonucleases/metabolismo , Exorribonucleases/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Transdução de Sinais
2.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39211105

RESUMO

Objective: Genome wide association studies have identified an exon 6 CTRB2 deletion variant that associates with increased risk of pancreatic cancer. To acquire evidence on its causal role, we developed a new mouse strain carrying an equivalent variant in Ctrb1 , the mouse orthologue of CTRB2 . Design: We used CRISPR/Cas9 to introduce a 707bp deletion in Ctrb1 encompassing exon 6 ( Ctrb1 Δexon6 ). This mutation closely mimics the human deletion variant. Mice carrying the mutant allele were extensively profiled at 3 months to assess their phenotype. Results: Ctrb1 Δexon6 mutant mice express a truncated CTRB1 that accumulates in the ER. The pancreas of homozygous mutant mice displays reduced chymotrypsin activity and total protein synthesis. The histological aspect of the pancreas is inconspicuous but ultrastructural analysis shows evidence of dramatic ER stress and cytoplasmic and nuclear inclusions. Transcriptomic analyses of the pancreas of mutant mice reveals acinar program down-regulation and increased activity of ER stress-related and inflammatory pathways. Heterozygous mice have an intermediate phenotype. Agr2 is one of the most up-regulated genes in mutant pancreata. Ctrb1 Δexon6 mice exhibit impaired recovery from acute caerulein-induced pancreatitis. Administration of TUDCA or sulindac partially alleviates the phenotype. A transcriptomic signature derived from the mutant pancreata is significantly enriched in normal human pancreas of CTRB2 exon 6 deletion variant carriers from the GTEx cohort. Conclusions: This mouse strain provides formal evidence that the Ctrb1 Δexon6 variant causes ER stress and inflammation in vivo , providing an excellent model to understand its contribution to pancreatic ductal adenocarcinoma development and to identify preventive strategies. SUMMARY BOX: What is already known about this subject?: - CTRB2 is one of the most abundant proteins produced by human pancreatic acinar cells. - A common exon 6 deletion variant in CTRB2 has been associated with an increased risk of pancreatic ductal adenocarcinoma. - Misfolding of digestive enzymes is associated with pancreatic pathology.What are the new findings?: - We developed a novel genetic model that recapitulates the human CTRB2 deletion variant in the mouse orthologue, Ctrb1 . - Truncated CTRB1 misfolds and accumulates in the ER; yet, mutant mice display a histologically normal pancreas at 3 months age.- CTRB1 and associated chaperones colocalize in the ER, the cytoplasm, and the nucleus of acinar cells.- Transcriptomics analysis reveals reduced activity of the acinar program and increased activity of pathways involved in ER stress, unfolded protein response, and inflammation.- Mutant mice are sensitized to pancreatic damage and do not recover properly from a mild caerulein-induced pancreatitis.- TUDCA administration partially relieves the ER stress in mutant mice.How might it impact on clinical practice in the foreseeable future?: - The new mouse model provides a tool to identify the mechanisms leading to increased pancreatic cancer risk in CTRB2 exon 6 carriers. - The findings suggest that drugs that cause ER stress relief and/or reduce inflammation might provide preventive opportunities.

3.
Cell Death Dis ; 15(4): 301, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684650

RESUMO

Understanding the mechanisms involved in colonic epithelial differentiation is key to unraveling the alterations causing inflammatory conditions and cancer. Organoid cultures provide an unique tool to address these questions but studies are scarce. We report a differentiation system toward enterocytes and goblet cells, the two major colonic epithelial cell lineages, using colon organoids generated from healthy tissue of colorectal cancer patients. Culture of these organoids in medium lacking stemness agents resulted in a modest ultrastructural differentiation phenotype with low-level expression of enterocyte (KLF4, KRT20, CA1, FABP2) and goblet cell (TFF2, TFF3, AGR2) lineage markers. BMP pathway activation through depletion of Noggin and addition of BMP4 resulted in enterocyte-biased differentiation. Contrarily, blockade of the Notch pathway using the γ-secretase inhibitor dibenzazepine (DBZ) favored goblet cell differentiation. Combination treatment with BMP4 and DBZ caused a balanced strong induction of both lineages. In contrast, colon tumor organoids responded poorly to BMP4 showing only weak signals of cell differentiation, and were unresponsive to DBZ. We also investigated the effects of 1α,25-dihydroxyvitamin D3 (calcitriol) on differentiation. Calcitriol attenuated the effects of BMP4 and DBZ on colon normal organoids, with reduced expression of differentiation genes and phenotype. Consistently, in normal organoids, calcitriol inhibited early signaling by BMP4 as assessed by reduction of the level of phospho-SMAD1/5/8. Our results show that BMP and Notch signaling play key roles in human colon stem cell differentiation to the enterocytic and goblet cell lineages and that calcitriol modulates these processes favoring stemness features.


Assuntos
Proteína Morfogenética Óssea 4 , Calcitriol , Proteínas de Transporte , Diferenciação Celular , Colo , Dibenzazepinas , Células Caliciformes , Fator 4 Semelhante a Kruppel , Organoides , Receptores Notch , Transdução de Sinais , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/citologia , Colo/patologia , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Calcitriol/farmacologia , Células Caliciformes/efeitos dos fármacos , Células Caliciformes/metabolismo , Dibenzazepinas/farmacologia , Linhagem da Célula/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/citologia , Vitamina D/farmacologia
4.
Nat Metab ; 5(12): 2111-2130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38097808

RESUMO

Fibrogenesis is part of a normal protective response to tissue injury that can become irreversible and progressive, leading to fatal diseases. Senescent cells are a main driver of fibrotic diseases through their secretome, known as senescence-associated secretory phenotype (SASP). Here, we report that cellular senescence, and multiple types of fibrotic diseases in mice and humans are characterized by the accumulation of iron. We show that vascular and hemolytic injuries are efficient in triggering iron accumulation, which in turn can cause senescence and promote fibrosis. Notably, we find that senescent cells persistently accumulate iron, even when the surge of extracellular iron has subdued. Indeed, under normal conditions of extracellular iron, cells exposed to different types of senescence-inducing insults accumulate abundant ferritin-bound iron, mostly within lysosomes, and present high levels of labile iron, which fuels the generation of reactive oxygen species and the SASP. Finally, we demonstrate that detection of iron by magnetic resonance imaging might allow non-invasive assessment of fibrotic burden in the kidneys of mice and in patients with renal fibrosis. Our findings suggest that iron accumulation plays a central role in senescence and fibrosis, even when the initiating events may be independent of iron, and identify iron metabolism as a potential therapeutic target for senescence-associated diseases.


Assuntos
Senescência Celular , Fenótipo Secretor Associado à Senescência , Humanos , Ferro , Rim , Fibrose
5.
Cancer Cell ; 41(9): 1637-1649.e11, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652007

RESUMO

A high percentage of patients with brain metastases frequently develop neurocognitive symptoms; however, understanding how brain metastasis co-opts the function of neuronal circuits beyond a tumor mass effect remains unknown. We report a comprehensive multidimensional modeling of brain functional analyses in the context of brain metastasis. By testing different preclinical models of brain metastasis from various primary sources and oncogenic profiles, we dissociated the heterogeneous impact on local field potential oscillatory activity from cortical and hippocampal areas that we detected from the homogeneous inter-model tumor size or glial response. In contrast, we report a potential underlying molecular program responsible for impairing neuronal crosstalk by scoring the transcriptomic and mutational profiles in a model-specific manner. Additionally, measurement of various brain activity readouts matched with machine learning strategies confirmed model-specific alterations that could help predict the presence and subtype of metastasis.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/genética , Encéfalo , Perfilação da Expressão Gênica , Aprendizado de Máquina , Mutação
6.
Sci Rep ; 12(1): 13408, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927565

RESUMO

Composites of polymer and graphene-based nanomaterials (GBNs) combine easy processing onto porous 3D membrane geometries due to the polymer and cellular differentiation stimuli due to GBNs fillers. Aiming to step forward to the clinical application of polymer/GBNs composites, this study performs a systematic and detailed comparative analysis of the influence of the properties of four different GBNs: (i) graphene oxide obtained from graphite chemically processes (GO); (ii) reduced graphene oxide (rGO); (iii) multilayered graphene produced by mechanical exfoliation method (Gmec); and (iv) low-oxidized graphene via anodic exfoliation (Ganodic); dispersed in polycaprolactone (PCL) porous membranes to induce astrocytic differentiation. PCL/GBN flat membranes were fabricated by phase inversion technique and broadly characterized in morphology and topography, chemical structure, hydrophilicity, protein adsorption, and electrical properties. Cellular assays with rat C6 glioma cells, as model for cell-specific astrocytes, were performed. Remarkably, low GBN loading (0.67 wt%) caused an important difference in the response of the C6 differentiation among PCL/GBN membranes. PCL/rGO and PCL/GO membranes presented the highest biomolecule markers for astrocyte differentiation. Our results pointed to the chemical structural defects in rGO and GO nanomaterials and the protein adsorption mechanisms as the most plausible cause conferring distinctive properties to PCL/GBN membranes for the promotion of astrocytic differentiation. Overall, our systematic comparative study provides generalizable conclusions and new evidences to discern the role of GBNs features for future research on 3D PCL/graphene composite hollow fiber membranes for in vitro neural models.


Assuntos
Grafite , Nanoestruturas , Animais , Grafite/química , Poliésteres/química , Polímeros , Ratos
7.
EMBO Mol Med ; 14(3): e14552, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35174975

RESUMO

We report a medium-throughput drug-screening platform (METPlatform) based on organotypic cultures that allows to evaluate inhibitors against metastases growing in situ. By applying this approach to the unmet clinical need of brain metastasis, we identified several vulnerabilities. Among them, a blood-brain barrier permeable HSP90 inhibitor showed high potency against mouse and human brain metastases at clinically relevant stages of the disease, including a novel model of local relapse after neurosurgery. Furthermore, in situ proteomic analysis applied to metastases treated with the chaperone inhibitor uncovered a novel molecular program in brain metastasis, which includes biomarkers of poor prognosis and actionable mechanisms of resistance. Our work validates METPlatform as a potent resource for metastasis research integrating drug-screening and unbiased omic approaches that is compatible with human samples. Thus, this clinically relevant strategy is aimed to personalize the management of metastatic disease in the brain and elsewhere.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Barreira Hematoencefálica , Neoplasias Encefálicas/tratamento farmacológico , Camundongos , Recidiva Local de Neoplasia , Proteômica
8.
Science ; 371(6529)2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33335017

RESUMO

The RNA binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. In this study, we found that RNA binding-deficient TDP-43 (produced by neurodegeneration-causing mutations or posttranslational acetylation in its RNA recognition motifs) drove TDP-43 demixing into intranuclear liquid spherical shells with liquid cores. These droplets, which we named "anisosomes", have shells that exhibit birefringence, thus indicating liquid crystal formation. Guided by mathematical modeling, we identified the primary components of the liquid core to be HSP70 family chaperones, whose adenosine triphosphate (ATP)-dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43-containing anisosomes. These structures converted to aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel or solid phase.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Proteínas de Ligação a RNA/metabolismo , Envelhecimento/metabolismo , Animais , Anisotropia , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Cristais Líquidos/química , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Domínios Proteicos , Proteínas de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley
9.
Mod Pathol ; 33(11): 2139-2146, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32620916

RESUMO

The spectrum of COVID-19 infection includes acute respiratory distress syndrome (ARDS) and macrophage activation syndrome (MAS), although the histological basis for these disorders has not been thoroughly explored. Post-mortem pulmonary and bone marrow biopsies were performed in 33 patients. Samples were studied with a combination of morphological and immunohistochemical techniques. Bone marrow studies were also performed in three living patients. Bone marrow post-mortem studies showed striking lesions of histiocytic hyperplasia with hemophagocytosis (HHH) in most (16/17) cases. This was also observed in three alive patients, where it mimicked the changes observed in hemophagocytic histiocytosis. Pulmonary changes included a combination of diffuse alveolar damage with fibrinous microthrombi predominantly involving small vessels, in particular the alveolar capillary. These findings were associated with the analytical and clinical symptoms, which helps us understand the respiratory insufficiency and reveal the histological substrate for the macrophage activation syndrome-like exhibited by these patients. Our results confirm that COVID-19 infection triggers a systemic immune-inflammatory disease and allow specific therapies to be proposed.


Assuntos
Infecções por Coronavirus/patologia , Histiócitos/patologia , Linfo-Histiocitose Hemofagocítica/patologia , Linfo-Histiocitose Hemofagocítica/virologia , Pneumonia Viral/patologia , Síndrome do Desconforto Respiratório/patologia , Síndrome do Desconforto Respiratório/virologia , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , Medula Óssea/patologia , COVID-19 , Feminino , Humanos , Hiperplasia/patologia , Hiperplasia/virologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
10.
Carcinogenesis ; 41(2): 203-213, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31095674

RESUMO

Pancreatic adenocarcinoma upregulated factor (PAUF), also known as ZG16B, was previously found in the secretome of metastatic colorectal cancer cells. Here, we demonstrated the presence of PAUF at the intracellular level and its multiple effects on cancer progression. An initial decline of PAUF expression was observed at early stages of colorectal cancer followed by an increase at the metastatic site. PAUF was located at different cellular compartments: membrane-associated vesicles, endosomes, microtubule-associated vesicles, cell growth cones and the cell nucleus. PAUF loss in two colorectal cancer cell lines caused severe alterations in the cell phenotype and cell cycle, including tetraploidy, extensive genomic alterations, micronuclei and increased apoptosis. An exhaustive analysis of the PAUF interactome using different proteomic approaches revealed the presence of multiple components of the cell cycle, mitotic checkpoint, Wnt pathway and intracellular transport. Among the interacting proteins we found ZW10, a moonlighting protein with a dual function in membrane trafficking and mitosis. In addition, PAUF silencing was associated to APC loss and increased ß-catenin nuclear expression. Altogether, our results suggest that PAUF depletion increases aneuploidy, promotes apoptosis and activates the Wnt/ß-catenin pathway in colorectal cancer cells facilitating cancer progression. In summary, PAUF behaves as a multifunctional protein, with different roles in cancer progression according to the extra- or intracellular expression, suggesting a therapeutic value for colorectal cancer.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Colorretais/patologia , Lectinas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Aneuploidia , Linhagem Celular Tumoral , Colo/patologia , Neoplasias Colorretais/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lectinas/genética , Fígado/patologia , Neoplasias Hepáticas/secundário , Mapeamento de Interação de Proteínas , Proteômica , Reto/patologia , Regulação para Cima
11.
FEBS J ; 287(1): 53-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31306552

RESUMO

Intestine is a major target of vitamin D and several studies indicate an association between vitamin D deficiency and inflammatory bowel diseases (IBD), but also increased colorectal cancer (CRC) risk and mortality. However, the putative effects of 1α,25-dihydroxyvitamin D3 (calcitriol), the active vitamin D metabolite, on human colonic stem cells are unknown. Here we show by immunohistochemistry and RNAscope in situ hybridization that vitamin D receptor (VDR) is unexpectedly expressed in LGR5+ colon stem cells in human tissue and in normal and tumor organoid cultures generated from patient biopsies. Interestingly, normal and tumor organoids respond differentially to calcitriol with profound and contrasting changes in their transcriptomic profiles. In normal organoids, calcitriol upregulates stemness-related genes, such as LGR5, SMOC2, LRIG1, MSI1, PTK7, and MEX3A, and inhibits cell proliferation. In contrast, in tumor organoids calcitriol has little effect on stemness-related genes while it induces a differentiated phenotype, and variably reduces cell proliferation. Concordantly, electron microscopy showed that calcitriol does not affect the blastic undifferentiated cell phenotype in normal organoids but it induces a series of differentiated features in tumor organoids. Our results constitute the first demonstration of a regulatory role of vitamin D on human colon stem cells, indicating a homeostatic effect on colon epithelium with relevant implications in IBD and CRC.


Assuntos
Calcitriol/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Colo/citologia , Neoplasias do Colo/patologia , Organoides/citologia , Receptores de Calcitriol/metabolismo , Células-Tronco/citologia , Apoptose , Proliferação de Células , Células Cultivadas , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Receptores de Calcitriol/deficiência , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
12.
Acta Neuropathol Commun ; 6(1): 68, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049290

RESUMO

Neurons are highly vulnerable to DNA damage induced by genotoxic agents such as topoisomerase activity, oxidative stress, ionizing radiation (IR) and chemotherapeutic drugs. To avert the detrimental effects of DNA lesions in genome stability, transcription and apoptosis, neurons activate robust DNA repair mechanisms. However, defective DNA repair with accumulation of unrepaired DNA are at the basis of brain ageing and several neurodegenerative diseases. Understanding the mechanisms by which neurons tolerate DNA damage accumulation as well as defining the genomic regions that are more vulnerable to DNA damage or refractory to DNA repair and therefore constitute potential targets in neurodegenerative diseases are essential issues in the field. In this work we investigated the nuclear topography and organization together with the genome-wide distribution of unrepaired DNA in rat cortical neurons 15 days upon IR. About 5% of non-irradiated and 55% of irradiated cells accumulate unrepaired DNA within persistent DNA damage foci (PDDF) of chromatin. These PDDF are featured by persistent activation of DNA damage/repair signaling, lack of transcription and localization in repressive nuclear microenvironments. Interestingly, the chromatin insulator CTCF is concentrated at the PDDF boundaries, likely contributing to isolate unrepaired DNA from intact transcriptionally active chromatin. By confining damaged DNA, PDDF would help preserving genomic integrity and preventing the production of aberrant proteins encoded by damaged genes.ChIP-seq analysis of genome-wide γH2AX distribution revealed a number of genomic regions enriched in γH2AX signal in IR-treated cortical neurons. Some of these regions are in close proximity to genes encoding essential proteins for neuronal functions and human neurodegenerative disorders such as epm2a (Lafora disease), serpini1 (familial encephalopathy with neuroserpin inclusion bodies) and il1rpl1 (mental retardation, X-linked 21). Persistent γH2AX signal close to those regions suggests that nearby genes could be either more vulnerable to DNA damage or more refractory to DNA repair.


Assuntos
Núcleo Celular/metabolismo , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos da radiação , Neurônios/efeitos da radiação , Raios X/efeitos adversos , Animais , Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio/metabolismo , Núcleo Celular/efeitos da radiação , Córtex Cerebral/citologia , Imunoprecipitação da Cromatina , Reparo do DNA/efeitos dos fármacos , Ácido Fólico/análogos & derivados , Ácido Fólico/uso terapêutico , Regulação da Expressão Gênica/efeitos da radiação , Proteína Glial Fibrilar Ácida/metabolismo , Histonas/metabolismo , Masculino , Proteínas dos Microfilamentos/metabolismo , Microscopia Eletrônica , Neurônios/ultraestrutura , Quinazolinas/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
13.
Cell Mol Life Sci ; 75(3): 527-546, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28879433

RESUMO

The survival of motor neuron (SMN) protein plays an essential role in the biogenesis of spliceosomal snRNPs and the molecular assembly of Cajal bodies (CBs). Deletion of or mutations in the SMN1 gene cause spinal muscular atrophy (SMA) with degeneration and loss of motor neurons. Reduced SMN levels in SMA lead to deficient snRNP biogenesis with consequent splicing pathology. Here, we demonstrate that SMN is a novel and specific target of the acetyltransferase CBP (CREB-binding protein). Furthermore, we identify lysine (K) 119 as the main acetylation site in SMN. Importantly, SMN acetylation enhances its cytoplasmic localization, causes depletion of CBs, and reduces the accumulation of snRNPs in nuclear speckles. In contrast, the acetylation-deficient SMNK119R mutant promotes formation of CBs and a novel category of promyelocytic leukemia (PML) bodies enriched in this protein. Acetylation increases the half-life of SMN protein, reduces its cytoplasmic diffusion rate and modifies its interactome. Hence, SMN acetylation leads to its dysfunction, which explains the ineffectiveness of HDAC (histone deacetylases) inhibitors in SMA therapy despite their potential to increase SMN levels.


Assuntos
Corpos Enovelados/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Citoplasma/metabolismo , Proteínas do Complexo SMN/metabolismo , Acetilação , Células Cultivadas , Células HEK293 , Humanos , Células MCF-7 , Processamento de Proteína Pós-Traducional , Transporte Proteico
14.
PLoS One ; 12(6): e0178925, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28582471

RESUMO

We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus.


Assuntos
Nucléolo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação da Expressão Gênica , Organelas/metabolismo , Proteína SUMO-1/metabolismo , Nucléolo Celular/genética , Ciclina E/genética , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/deficiência , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Dano ao DNA , Células HCT116 , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Biogênese de Organelas , Organelas/genética , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteína SUMO-1/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/genética , Proteína Exportina 1
15.
Oncotarget ; 7(43): 69536-69548, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27588501

RESUMO

MXD1 is a protein that interacts with MAX, to form a repressive transcription factor. MXD1-MAX binds E-boxes. MXD1-MAX antagonizes the transcriptional activity of the MYC oncoprotein in most models. It has been reported that MYC overexpression leads to augmented RNA synthesis and ribosome biogenesis, which is a relevant activity in MYC-mediated tumorigenesis. Here we describe that MXD1, but not MYC or MNT, localizes to the nucleolus in a wide array of cell lines derived from different tissues (carcinoma, leukemia) as well as in embryonic stem cells. MXD1 also localizes in the nucleolus of primary tissue cells as neurons and Sertoli cells. The nucleolar localization of MXD1 was confirmed by co-localization with UBF. Co-immunoprecipitation experiments showed that MXD1 interacted with UBF and proximity ligase assays revealed that this interaction takes place in the nucleolus. Furthermore, chromatin immunoprecipitation assays showed that MXD1 was bound in the transcribed rDNA chromatin, where it co-localizes with UBF, but also in the ribosomal intergenic regions. The MXD1 involvement in rRNA synthesis was also suggested by the nucleolar segregation upon rRNA synthesis inhibition by actinomycin D. Silencing of MXD1 with siRNAs resulted in increased synthesis of pre-rRNA while enforced MXD1 expression reduces it. The results suggest a new role for MXD1, which is the control of ribosome biogenesis. This new MXD1 function would be important to curb MYC activity in tumor cells.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Nucléolo Celular/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , RNA Ribossômico/metabolismo , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Células K562 , Masculino , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA , RNA Ribossômico/genética , Ratos , Proteínas Repressoras/genética , Espermatogônias/citologia , Espermatogônias/metabolismo
16.
Mol Neurobiol ; 53(10): 6799-6808, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26660115

RESUMO

Neurons are highly vulnerable to genotoxic agents. To restore genome integrity upon DNA lesions, neurons trigger a DNA damage response (DDR) that requires chromatin modifications and transcriptional silencing at DNA damage sites. To study the reorganization of the active RNA polymerase II (Pol II), which transcribes all mRNA-encoding genes, and the participation of the ubiquitin-proteasome system (UPS) in the neuronal DDR, we have used rat sensory ganglion neurons exposed to X-rays (4 Gy) ionizing radiation (IR). In control neurons, Pol II appears concentrated in numerous chromatin microfoci identified as transcription factories by the incorporation of 5'-fluorouridine into nascent RNA. Upon IR treatment, numerous IR-induced foci (IRIF), which were immunoreactive for γH2AX and 53BP1, were observed as early as 30 min post-IR; their number progressively reduced at 3 h, 1 day, and 3 days post-IR. The formation of IRIF was associated with a decrease in Pol II levels by both immunofluorescence and Western blotting. Treatment with the proteasome inhibitor bortezomib strongly increased Pol II levels in both control and irradiated neurons, suggesting that proteasome plays a proteolytic role by clearing stalled Pol II complexes at DNA damage sites, as a prelude to DNA repair. Neuronal IRIF recruited ubiquitylated proteins, including ubiquitylated histone H2A (Ub-H2A), and the catalytic proteasome 20S. Ub-H2A has been associated with transcriptional silencing at DNA damage sites. On the other hand, the participation of UPS in neuronal DDR may be essential for the ubiquitylation of Pol II and other proteasome substrates of the DNA repair machinery and their subsequent proteasome-mediated degradation.


Assuntos
Dano ao DNA , Neurônios/patologia , Neurônios/efeitos da radiação , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Polimerase II/metabolismo , Radiação Ionizante , Ubiquitina/metabolismo , Animais , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Regulação para Baixo/efeitos da radiação , Eucromatina/metabolismo , Masculino , Neurônios/metabolismo , Ratos Sprague-Dawley , Transcrição Gênica/efeitos da radiação , Proteínas Ubiquitinadas/metabolismo
17.
J Biol Chem ; 290(44): 26533-48, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26364852

RESUMO

Cystatin D is an inhibitor of lysosomal and secreted cysteine proteases. Strikingly, cystatin D has been found to inhibit proliferation, migration, and invasion of colon carcinoma cells indicating tumor suppressor activity that is unrelated to protease inhibition. Here, we demonstrate that a proportion of cystatin D locates within the cell nucleus at specific transcriptionally active chromatin sites. Consistently, transcriptomic analysis show that cystatin D alters gene expression, including that of genes encoding transcription factors such as RUNX1, RUNX2, and MEF2C in HCT116 cells. In concordance with transcriptomic data, quantitative proteomic analysis identified 292 proteins differentially expressed in cystatin D-expressing cells involved in cell adhesion, cytoskeleton, and RNA synthesis and processing. Furthermore, using cytokine arrays we found that cystatin D reduces the secretion of several protumor cytokines such as fibroblast growth factor-4, CX3CL1/fractalkine, neurotrophin 4 oncostatin-M, pulmonary and activation-regulated chemokine/CCL18, and transforming growth factor B3. These results support an unanticipated role of cystatin D in the cell nucleus, controlling the transcription of specific genes involved in crucial cellular functions, which may mediate its protective action in colon cancer.


Assuntos
Neoplasias do Colo/metabolismo , Cistatinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Cistatinas/genética , Citocinas/biossíntese , Citocinas/genética , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Proteínas de Neoplasias/genética , Proteômica
18.
Front Cell Neurosci ; 9: 250, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26190974

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive weakness and muscle atrophy related to the loss of upper and lower motor neurons (MNs) without a curative treatment. There is experimental evidence suggesting that retinoids may be involved in ALS pathogenesis. Bexarotene (Bxt) is a retinoid-X receptor agonist used in the treatment of cutaneous lymphoma with a favorable safety profile whose effects have been recently investigated in other neurodegenerative diseases. In this study, we analyze the potential therapeutic effect of Bxt in the SOD1(G93A) mouse model of ALS. Mice were treated with Bxt or vehicle five times per week from day 60 onward. Survival, weight, and neuromuscular function studies together with histological and biochemical analyses were performed. Bxt significantly delayed motor function deterioration, ameliorated the loss of body weight, and extended mice survival up to 30% of the symptomatic period. Histological analyses of the lumbosacral spinal cord revealed that Bxt markedly delayed the early motor-neuron degeneration occurring at presymptomatic stages in ALS-transgenic mice. Bxt treatment contributed to preserve the MN homeostasis in the SOD1(G93A) mice. Particularly, it reduced the neuronal loss and the chromatolytic response, induced nucleolar hypertrophy, decreased the formation of ubiquitylated inclusions, and modulated the lysosomal response. As an agonist of the retinoic-X receptor (RXR) pathway, Bxt notably increased the nuclear expression of the RXRα throughout transcriptionally active euchromatin domains. Bxt also contributed to protect the MN environment by reducing reactive astrogliosis and preserving perisomatic synapsis. Overall, these neuroprotective effects suggest that treatment with Bxt could be useful in ALS, particularly in those cases related to SOD1 mutations.

19.
Oncotarget ; 6(8): 5903-17, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25788273

RESUMO

Sporadic colorectal cancer (CRC) insurgence and progression depend on the activation of Wnt/ß-catenin signaling. Dickkopf (DKK)-1 is an extracellular inhibitor of Wnt/ß-catenin signaling that also has undefined ß-catenin-independent actions. Here we report for the first time that a proportion of DKK-1 locates within the nucleus of healthy small intestine and colon mucosa, and of CRC cells at specific chromatin sites of active transcription. Moreover, we show that DKK-1 regulates several cancer-related genes including the cancer stem cell marker aldehyde dehydrogenase 1A1 (ALDH1A1) and Ral-binding protein 1-associated Eps domain-containing 2 (REPS2), which are involved in detoxification of chemotherapeutic agents. Nuclear DKK-1 expression is lost along CRC progression; however, it remains high in a subset (15%) of CRC patients (n = 699) and associates with decreased progression-free survival (PFS) after chemotherapy administration and overall survival (OS) [adjusted HR, 1.65; 95% confidence interval (CI), 1.23-2.21; P = 0.002)]. Overexpression of ALDH1A1 and REPS2 associates with nuclear DKK-1 expression in tumors and correlates with decreased OS (P = 0.001 and 0.014) and PFS. In summary, our findings demonstrate a novel location of DKK-1 within the cell nucleus and support a role of nuclear DKK-1 as a predictive biomarker of chemoresistance in colorectal cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Aldeído Desidrogenase/biossíntese , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mucosa Intestinal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Prognóstico , Retinal Desidrogenase , Transdução de Sinais
20.
Methods Mol Biol ; 1254: 43-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25431056

RESUMO

Nuclear architecture is highly concerted including the organization of chromosome territories and distinct nuclear bodies, such as nucleoli, Cajal bodies, nuclear speckles of splicing factors, and promyelocytic leukemia nuclear bodies, among others. The organization of such nuclear compartments is very dynamic and may represent a sensitive indicator of the functional status of the cell. Here, we describe methodologies that allow isolating discrete cell populations from the brain and the fine observation of nuclear signs that could be insightful predictors of an early neuronal injury in a wide range of neurodegenerative disorders. The tools here described may be of use for the early detection of pre-degenerative processes in neurodegenerative diseases and for validating novel rescue strategies.


Assuntos
Compartimento Celular/genética , Nucléolo Celular/patologia , Corpos Enovelados/patologia , Doenças Neurodegenerativas/patologia , Nucléolo Celular/genética , Nucléolo Celular/ultraestrutura , Corpos Enovelados/genética , Corpos Enovelados/ultraestrutura , Humanos , Biologia Molecular/métodos , Doenças Neurodegenerativas/genética , Splicing de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA