Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Genet ; 55(12): 2160-2174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049665

RESUMO

Whole-genome sequencing of longitudinal tumor pairs representing transformation of follicular lymphoma to high-grade B cell lymphoma with MYC and BCL2 rearrangements (double-hit lymphoma) identified coding and noncoding genomic alterations acquired during lymphoma progression. Many of these transformation-associated alterations recurrently and focally occur at topologically associating domain resident regulatory DNA elements, including H3K4me3 promoter marks located within H3K27ac super-enhancer clusters in B cell non-Hodgkin lymphoma. One region found to undergo recurrent alteration upon transformation overlaps a super-enhancer affecting the expression of the PAX5/ZCCHC7 gene pair. ZCCHC7 encodes a subunit of the Trf4/5-Air1/2-Mtr4 polyadenylation-like complex and demonstrated copy number gain, chromosomal translocation and enhancer retargeting-mediated transcriptional upregulation upon lymphoma transformation. Consequently, lymphoma cells demonstrate nucleolar dysregulation via altered noncoding 5.8S ribosomal RNA processing. We find that a noncoding mutation acquired during lymphoma progression affects noncoding rRNA processing, thereby rewiring protein synthesis leading to oncogenic changes in the lymphoma proteome.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Mutação , Linfoma de Células B/genética , Linfoma de Células B/patologia , Translocação Genética/genética , Linfoma/genética , Sequências Reguladoras de Ácido Nucleico
2.
Mol Cell ; 83(18): 3268-3282.e7, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37689068

RESUMO

Heritable non-genetic information can regulate a variety of complex phenotypes. However, what specific non-genetic cues are transmitted from parents to their descendants are poorly understood. Here, we perform metabolic methyl-labeling experiments to track the heritable transmission of methylation from ancestors to their descendants in the nematode Caenorhabditis elegans (C. elegans). We find heritable methylation in DNA, RNA, proteins, and lipids. We find that parental starvation elicits reduced fertility, increased heat stress resistance, and extended longevity in fed, naïve progeny. This intergenerational hormesis is accompanied by a heritable increase in N6'-dimethyl adenosine (m6,2A) on the 18S ribosomal RNA at adenosines 1735 and 1736. We identified DIMT-1/DIMT1 as the m6,2A and BUD-23/BUD23 as the m7G methyltransferases in C. elegans that are both required for intergenerational hormesis, while other rRNA methyltransferases are dispensable. This study labels and tracks heritable non-genetic material across generations and demonstrates the importance of rRNA methylation for regulating epigenetic inheritance.


Assuntos
Caenorhabditis elegans , Hormese , Animais , RNA Ribossômico 18S , Caenorhabditis elegans/genética , Metiltransferases/genética , Adenosina
3.
RNA Biol ; 20(1): 652-665, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-37635368

RESUMO

Ribosomal RNAs are decorated by numerous post-transcriptional modifications whose exact roles in ribosome biogenesis, function, and human pathophysiology remain largely unknown. Here, we report a targeted direct rRNA sequencing approach involving a substrate selection step and demonstrate its suitability to identify differential modification sites in combination with the JACUSA2 software. We compared JACUSA2 to other tools designed for RNA modification detection and show that JACUSA2 outperforms other software with regard to detection of base modifications such as methylation, acetylation and aminocarboxypropylation. To illustrate its widespread usability, we applied our method to a collection of CRISPR-Cas9 engineered colon carcinoma cells lacking specific enzymatic activities responsible for particular rRNA modifications and systematically compared them to isogenic wild-type RNAs. Besides the numerous 2'-O methylated riboses and pseudouridylated residues, our approach was suitable to reliably identify differential base methylation and acetylation events. Importantly, our method does not require any prior knowledge of modification sites or the need to train complex models. We further report for the first time detection of human rRNA modifications by direct RNA-sequencing on Flongle flow cells, the smallest-scale nanopore flow cell available to date. The use of these smaller flow cells reduces RNA input requirements, making our workflow suitable for the analysis of samples with limited availability and clinical work.


Assuntos
Nanoporos , RNA , Humanos , RNA/genética , Ribossomos/genética , RNA Ribossômico/genética , Processamento Pós-Transcricional do RNA
4.
Biomolecules ; 12(9)2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36139106

RESUMO

Alkaloids isolated from members of the Amaryllidaceae plant family are promising anticancer agents. The purpose of the current study was to determine if the isocarbostyrils narciclasine, pancratistatin, lycorane, lycorine, crinane, and haemanthamine inhibit phenomena related to cancer progression in vitro. To achieve this, we examined the proliferation, adhesion, and invasion of cultured human colon cancer cells via MTT assay and Matrigel-coated Boyden chambers. In addition, Luminex assays were used to quantify the secretion of matrix metalloproteinases (MMP) and cytokines associated with poor clinical outcomes. We found that all alkaloids decreased cell proliferation regardless of TP53 status, with narciclasine exhibiting the greatest potency. The effects on cell proliferation also appear to be specific to cancer cells. Narciclasine, lycorine, and haemanthamine decrease both adhesion and invasion but with various potencies depending on the cell line. In addition, narciclasine, lycorine, and haemanthamine decreased the secretion of MMP-1, -2, and -7, as well as the secretion of the cytokines pentraxin 3 and vascular endothelial growth factor. In conclusion, the present study shows that Amaryllidaceae alkaloids decrease phenomena and cytokines associated with colorectal cancer progression, supporting future investigations regarding their potential as multifaceted drug candidates.


Assuntos
Alcaloides , Alcaloides de Amaryllidaceae , Neoplasias do Colo , Alcaloides/farmacologia , Alcaloides de Amaryllidaceae/farmacologia , Linhagem Celular , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Citocinas , Humanos , Metaloproteinase 1 da Matriz , Fenantridinas , Fator A de Crescimento do Endotélio Vascular/farmacologia
5.
Nat Commun ; 13(1): 3706, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764642

RESUMO

Ribosome biogenesis is an energetically expensive program that is dictated by nutrient availability. Here we report that nutrient deprivation severely impairs precursor ribosomal RNA (pre-rRNA) processing and leads to the accumulation of unprocessed rRNAs. Upon nutrient restoration, pre-rRNAs stored under starvation are processed into mature rRNAs that are utilized for ribosome biogenesis. Failure to accumulate pre-rRNAs under nutrient stress leads to perturbed ribosome assembly upon nutrient restoration and subsequent apoptosis via uL5/uL18-mediated activation of p53. Restoration of glutamine alone activates p53 by triggering uL5/uL18 translation. Induction of uL5/uL18 protein synthesis by glutamine is dependent on the translation factor eukaryotic elongation factor 2 (eEF2), which is in turn dependent on Raf/MEK/ERK signaling. Depriving cells of glutamine prevents the activation of p53 by rRNA synthesis inhibitors. Our data reveals a mechanism that tumor cells can exploit to suppress p53-mediated apoptosis during fluctuations in environmental nutrient availability.


Assuntos
Glutamina , Neoplasias , Glutamina/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Inibidores da Síntese de Ácido Nucleico , Precursores de RNA/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Blood ; 139(21): 3111-3126, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35213692

RESUMO

The congenital bone marrow failure syndrome Diamond-Blackfan anemia (DBA) is typically associated with variants in ribosomal protein (RP) genes impairing erythroid cell development. Here we report multiple individuals with biallelic HEATR3 variants exhibiting bone marrow failure, short stature, facial and acromelic dysmorphic features, and intellectual disability. These variants destabilize a protein whose yeast homolog is known to synchronize the nuclear import of RPs uL5 (RPL11) and uL18 (RPL5), which are both critical for producing ribosomal subunits and for stabilizing the p53 tumor suppressor when ribosome biogenesis is compromised. Expression of HEATR3 variants or repression of HEATR3 expression in primary cells, cell lines of various origins, and yeast models impairs growth, differentiation, pre-ribosomal RNA processing, and ribosomal subunit formation reminiscent of DBA models of large subunit RP gene variants. Consistent with a role of HEATR3 in RP import, HEATR3-depleted cells or patient-derived fibroblasts display reduced nuclear accumulation of uL18. Hematopoietic progenitor cells expressing HEATR3 variants or small-hairpin RNAs knocking down HEATR3 synthesis reveal abnormal acceleration of erythrocyte maturation coupled to severe proliferation defects that are independent of p53 activation. Our study uncovers a new pathophysiological mechanism leading to DBA driven by biallelic HEATR3 variants and the destabilization of a nuclear import protein important for ribosome biogenesis.


Assuntos
Anemia de Diamond-Blackfan , Proteínas , Transporte Ativo do Núcleo Celular/genética , Anemia de Diamond-Blackfan/metabolismo , Humanos , Mutação , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
7.
RNA Biol ; 18(sup1): 61-74, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775914

RESUMO

Ribosomes are essential nanomachines responsible for all protein production in cells. Ribosome biogenesis and function are energy costly processes, they are tightly regulated to match cellular needs. In cancer, major pathways that control ribosome biogenesis and function are often deregulated to ensure cell survival and to accommodate the continuous proliferation of tumour cells. Ribosomal RNAs (rRNAs) are abundantly modified with 2'-O-methylation (Nm, ribomethylation) being one of the most common modifications. In eukaryotic ribosomes, ribomethylation is performed by the methyltransferase Fibrillarin guided by box C/D small nucleolar RNAs (snoRNAs). Accumulating evidences indicate that snoRNA expression and ribosome methylation profiles are altered in cancer. Here we review our current knowledge on differential snoRNA expression and rRNA 2'-O methylation in the context of human malignancies, and discuss the consequences and opportunities for cancer diagnostics, prognostics, and therapeutics.


Assuntos
Neoplasias/patologia , Processamento Pós-Transcricional do RNA , RNA Ribossômico/química , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , Ribossomos/metabolismo , Animais , Humanos , Metilação , Neoplasias/genética , Ribossomos/genética
8.
Genes Dev ; 35(15-16): 1123-1141, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34301768

RESUMO

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB)-specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at ∼80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.


Assuntos
Células Intersticiais de Cajal/metabolismo , Metilação , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Colangiocarcinoma/tratamento farmacológico , Neoplasias Hematológicas/tratamento farmacológico , Humanos , Fosforilação , RNA Nuclear Pequeno/química , Ribonucleoproteínas/metabolismo , Spliceossomos/genética , Tratamento Farmacológico da COVID-19
9.
bioRxiv ; 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33948588

RESUMO

Spliceosomal small nuclear RNAs (snRNAs) are modified by small Cajal body (CB) specific ribonucleoproteins (scaRNPs) to ensure snRNP biogenesis and pre-mRNA splicing. However, the function and subcellular site of snRNA modification are largely unknown. We show that CB localization of the protein Nopp140 is essential for concentration of scaRNPs in that nuclear condensate; and that phosphorylation by casein kinase 2 (CK2) at some 80 serines targets Nopp140 to CBs. Transiting through CBs, snRNAs are apparently modified by scaRNPs. Indeed, Nopp140 knockdown-mediated release of scaRNPs from CBs severely compromises 2'-O-methylation of spliceosomal snRNAs, identifying CBs as the site of scaRNP catalysis. Additionally, alternative splicing patterns change indicating that these modifications in U1, U2, U5, and U12 snRNAs safeguard splicing fidelity. Given the importance of CK2 in this pathway, compromised splicing could underlie the mode of action of small molecule CK2 inhibitors currently considered for therapy in cholangiocarcinoma, hematological malignancies, and COVID-19.

10.
Nat Rev Mol Cell Biol ; 22(3): 165-182, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32873929

RESUMO

The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.


Assuntos
Nucléolo Celular/química , Envelhecimento/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Ciclo Celular/fisiologia , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Fracionamento Químico , Expressão Gênica , Humanos , Extração Líquido-Líquido , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Ribonucleoproteínas/metabolismo , Ribossomos/fisiologia
11.
Nucleic Acids Res ; 48(19): e110, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32976574

RESUMO

Developing methods for accurate detection of RNA modifications remains a major challenge in epitranscriptomics. Next-generation sequencing-based mapping approaches have recently emerged but, often, they are not quantitative and lack specificity. Pseudouridine (ψ), produced by uridine isomerization, is one of the most abundant RNA modification. ψ mapping classically involves derivatization with soluble carbodiimide (CMCT), which is prone to variation making this approach only semi-quantitative. Here, we developed 'HydraPsiSeq', a novel quantitative ψ mapping technique relying on specific protection from hydrazine/aniline cleavage. HydraPsiSeq is quantitative because the obtained signal directly reflects pseudouridine level. Furthermore, normalization to natural unmodified RNA and/or to synthetic in vitro transcripts allows absolute measurements of modification levels. HydraPsiSeq requires minute amounts of RNA (as low as 10-50 ng), making it compatible with high-throughput profiling of diverse biological and clinical samples. Exploring the potential of HydraPsiSeq, we profiled human rRNAs, revealing strong variations in pseudouridylation levels at ∼20-25 positions out of total 104 sites. We also observed the dynamics of rRNA pseudouridylation throughout chondrogenic differentiation of human bone marrow stem cells. In conclusion, HydraPsiSeq is a robust approach for the systematic mapping and accurate quantification of pseudouridines in RNAs with applications in disease, aging, development, differentiation and/or stress response.


Assuntos
Pseudouridina/isolamento & purificação , RNA Mensageiro , RNA Ribossômico , RNA de Transferência , Análise de Sequência de RNA/métodos , Células Cultivadas , Humanos , Células-Tronco Mesenquimais , Saccharomyces cerevisiae/genética
12.
Am J Hum Genet ; 106(5): 694-706, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32359472

RESUMO

How mutations in the non-coding U8 snoRNA cause the neurological disorder leukoencephalopathy with calcifications and cysts (LCC) is poorly understood. Here, we report the generation of a mutant U8 animal model for interrogating LCC-associated pathology. Mutant U8 zebrafish exhibit defective central nervous system development, a disturbance of ribosomal RNA (rRNA) biogenesis and tp53 activation, which monitors ribosome biogenesis. Further, we demonstrate that fibroblasts from individuals with LCC are defective in rRNA processing. Human precursor-U8 (pre-U8) containing a 3' extension rescued mutant U8 zebrafish, and this result indicates conserved biological function. Analysis of LCC-associated U8 mutations in zebrafish revealed that one null and one functional allele contribute to LCC. We show that mutations in three nucleotides at the 5' end of pre-U8 alter the processing of the 3' extension, and we identify a previously unknown base-pairing interaction between the 5' end and the 3' extension of human pre-U8. Indeed, LCC-associated mutations in any one of seven nucleotides in the 5' end and 3' extension alter the processing of pre-U8, and these mutations are present on a single allele in almost all individuals with LCC identified to date. Given genetic data indicating that bi-allelic null U8 alleles are likely incompatible with human development, and that LCC is not caused by haploinsufficiency, the identification of hypomorphic misprocessing mutations that mediate viable embryogenesis furthers our understanding of LCC molecular pathology and cerebral vascular homeostasis.


Assuntos
Alelos , Calcinose/genética , Cistos do Sistema Nervoso Central/genética , Cistos/genética , Leucoencefalopatias/genética , Mutação , RNA Nucleolar Pequeno/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Calcinose/patologia , Cistos do Sistema Nervoso Central/patologia , Sequência Conservada , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Humanos , Leucoencefalopatias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
13.
Nucleic Acids Res ; 47(15): 7719-7733, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31328227

RESUMO

N6-methyladenosine (m6A) has recently been found abundantly on messenger RNA and shown to regulate most steps of mRNA metabolism. Several important m6A methyltransferases have been described functionally and structurally, but the enzymes responsible for installing one m6A residue on each subunit of human ribosomes at functionally important sites have eluded identification for over 30 years. Here, we identify METTL5 as the enzyme responsible for 18S rRNA m6A modification and confirm ZCCHC4 as the 28S rRNA modification enzyme. We show that METTL5 must form a heterodimeric complex with TRMT112, a known methyltransferase activator, to gain metabolic stability in cells. We provide the first atomic resolution structure of METTL5-TRMT112, supporting that its RNA-binding mode differs distinctly from that of other m6A RNA methyltransferases. On the basis of similarities with a DNA methyltransferase, we propose that METTL5-TRMT112 acts by extruding the adenosine to be modified from a double-stranded nucleic acid.


Assuntos
Adenosina/química , Regulação Neoplásica da Expressão Gênica , Metiltransferases/química , RNA Mensageiro/química , RNA Ribossômico 18S/química , Adenosina/genética , Adenosina/metabolismo , Sequência de Bases , Sítios de Ligação , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cristalografia por Raios X , Deleção de Genes , Células HCT116 , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Transdução de Sinais , Especificidade por Substrato
14.
Biochem Pharmacol ; 159: 74-81, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468711

RESUMO

Ribosomes are nanomachines essential for protein production in all living cells. Ribosome synthesis increases in cancer cells to cope with a rise in protein synthesis and sustain unrestricted growth. This increase in ribosome biogenesis is reflected by severe morphological alterations of the nucleolus, the cell compartment where the initial steps of ribosome biogenesis take place. Ribosome biogenesis has recently emerged as an effective target in cancer therapy, and several compounds that inhibit ribosome production or function, killing preferentially cancer cells, have entered clinical trials. Recent research indicates that cells express heterogeneous populations of ribosomes and that the composition of ribosomes may play a key role in tumorigenesis, exposing novel therapeutic opportunities. Here, we review recent data demonstrating that ribosome biogenesis is a promising druggable pathway in cancer therapy, and discuss future research perspectives.


Assuntos
Antineoplásicos/farmacologia , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , RNA Ribossômico/metabolismo
15.
Nat Struct Mol Biol ; 25(11): 1035-1046, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30374086

RESUMO

Synchronization of mitochondrial and cytoplasmic translation rates is critical for the maintenance of cellular fitness, with cancer cells being especially vulnerable to translational uncoupling. Although alterations of cytosolic protein synthesis are common in human cancer, compensating mechanisms in mitochondrial translation remain elusive. Here we show that the malignant long non-coding RNA (lncRNA) SAMMSON promotes a balanced increase in ribosomal RNA (rRNA) maturation and protein synthesis in the cytosol and mitochondria by modulating the localization of CARF, an RNA-binding protein that sequesters the exo-ribonuclease XRN2 in the nucleoplasm, which under normal circumstances limits nucleolar rRNA maturation. SAMMSON interferes with XRN2 binding to CARF in the nucleus by favoring the formation of an aberrant cytoplasmic RNA-protein complex containing CARF and p32, a mitochondrial protein required for the processing of the mitochondrial rRNAs. These data highlight how a single oncogenic lncRNA can simultaneously modulate RNA-protein complex formation in two distinct cellular compartments to promote cell growth.


Assuntos
Neoplasias/genética , Neoplasias/metabolismo , Biossíntese de Proteínas/genética , RNA Longo não Codificante/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Compartimento Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Citosol/metabolismo , Exorribonucleases/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Modelos Biológicos , Neoplasias/patologia , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo
16.
Nat Protoc ; 13(10): 2387-2406, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30250292

RESUMO

Ribosome biogenesis is initiated in the nucleolus, a cell condensate essential to gene expression, whose morphology informs cancer pathologists on the health status of a cell. Here, we describe a protocol for assessing, both qualitatively and quantitatively, the involvement of trans-acting factors in the nucleolar structure. The protocol involves use of siRNAs to deplete cells of factors of interest, fluorescence imaging of nucleoli in an automated high-throughput platform, and use of dedicated software to determine an index of nucleolar disruption, the iNo score. This scoring system is unique in that it integrates the five most discriminant shape and textural features of the nucleolus into a parametric equation. Determining the iNo score enables both qualitative and quantitative factor classification with prediction of function (functional clustering), which to our knowledge is not achieved by competing approaches, as well as stratification of their effect (severity of defects) on nucleolar structure. The iNo score has the potential to be useful in basic cell biology (nucleolar structure-function relationships, mitosis, and senescence), developmental and/or organismal biology (aging), and clinical practice (cancer, viral infection, and reproduction). The entire protocol can be completed within 1 week.


Assuntos
Nucléolo Celular/patologia , Nucléolo Celular/ultraestrutura , Imagem Óptica/métodos , Nucléolo Celular/genética , Senescência Celular , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Interfase , Mitose , Neoplasias/diagnóstico , Neoplasias/patologia , Proteínas Nucleares/análise , Proteínas Nucleares/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Software
17.
Sci Rep ; 8(1): 11904, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093689

RESUMO

The entire chemical modification repertoire of yeast ribosomal RNAs and the enzymes responsible for it have recently been identified. Nonetheless, in most cases the precise roles played by these chemical modifications in ribosome structure, function and regulation remain totally unclear. Previously, we demonstrated that yeast Rrp8 methylates m1A645 of 25S rRNA in yeast. Here, using mung bean nuclease protection assays in combination with quantitative RP-HPLC and primer extension, we report that 25S/28S rRNA of S. pombe, C. albicans and humans also contain a single m1A methylation in the helix 25.1. We characterized nucleomethylin (NML) as a human homolog of yeast Rrp8 and demonstrate that NML catalyzes the m1A1322 methylation of 28S rRNA in humans. Our in vivo structural probing of 25S rRNA, using both DMS and SHAPE, revealed that the loss of the Rrp8-catalyzed m1A modification alters the conformation of domain I of yeast 25S rRNA causing translation initiation defects detectable as halfmers formation, likely because of incompetent loading of 60S on the 43S-preinitiation complex. Quantitative proteomic analysis of the yeast Δrrp8 mutant strain using 2D-DIGE, revealed that loss of m1A645 impacts production of specific set of proteins involved in carbohydrate metabolism, translation and ribosome synthesis. In mouse, NML has been characterized as a metabolic disease-associated gene linked to obesity. Our findings in yeast also point to a role of Rrp8 in primary metabolism. In conclusion, the m1A modification is crucial for maintaining an optimal 60S conformation, which in turn is important for regulating the production of key metabolic enzymes.


Assuntos
Adenosina/análogos & derivados , Metiltransferases/metabolismo , Proteínas Nucleares/metabolismo , RNA Ribossômico/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores/metabolismo , Adenosina/metabolismo , Sequência de Bases , Eletroforese em Gel Bidimensional , Células HCT116 , Humanos , Metilação , Metiltransferases/genética , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Domínios Proteicos , Proteína O-Metiltransferase , Proteômica/métodos , RNA Ribossômico/química , RNA Ribossômico/genética , Proteínas de Ligação a RNA , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Maiores/química , Subunidades Ribossômicas Maiores/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
Structure ; 26(3): 416-425.e4, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29429877

RESUMO

Alkaloids isolated from the Amaryllidaceae plants have potential as therapeutics for treating human diseases. Haemanthamine has been studied as a novel anticancer agent due to its ability to overcome cancer cell resistance to apoptosis. Biochemical experiments have suggested that hemanthamine targets the ribosome. However, a structural characterization of its mechanism has been missing. Here we present the 3.1 Å resolution X-ray structure of haemanthamine bound to the Saccharomyces cerevisiae 80S ribosome. This structure reveals that haemanthamine targets the A-site cleft on the large ribosomal subunit rearranging rRNA to halt the elongation phase of translation. Furthermore, we provide evidence that haemanthamine and other Amaryllidaceae alkaloids also inhibit specifically ribosome biogenesis, triggering nucleolar stress response and leading to p53 stabilization in cancer cells. Together with a computer-aided interpretation of existing structure-activity relationships of Amaryllidaceae alkaloids congeners, we provide a rationale for designing molecules with enhanced potencies and reduced toxicities.


Assuntos
Alcaloides de Amaryllidaceae/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Fenantridinas/farmacologia , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Alcaloides de Amaryllidaceae/química , Antineoplásicos/química , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Cristalografia por Raios X , Células HCT116 , Humanos , Modelos Moleculares , Conformação Molecular , Fenantridinas/química , RNA Ribossômico/química , RNA Ribossômico/metabolismo , Ribossomos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo
19.
Sci Rep ; 7(1): 11490, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904332

RESUMO

Ribosomal RNA modifications are important in optimizing ribosome function. Sugar 2'-O-methylation performed by fibrillarin-associated box C/D antisense guide snoRNAs impacts all steps of translation, playing a role in disease etiology (cancer). As it renders adjacent phosphodiester bonds resistant to alkaline treatment, 2'-O-methylation can be monitored qualitatively and quantitatively by applying next-generation sequencing to fragments of randomly cleaved RNA. We remapped all sites of 2'-O-methylation in human rRNAs in two isogenic diploid cell lines, one producing and one not producing the antitumor protein p53. We identified sites naturally modified only partially (confirming the existence in cells of compositionally distinct ribosomes with potentially specialized functions) and sites whose 2'-O-methylation is sensitive to p53. We mapped sites particularly vulnerable to a reduced level of the methyltransferase fibrillarin. The remarkable fact that these are largely sites of natural hypomodification provides initial insights into the mechanism of partial RNA modification. Sites where methylation appeared vulnerable lie peripherally on the 3-D structure of the ribosomal subunits, whereas the numerous modifications present at the core of the subunits, where the functional centers lie, appeared robustly made. We suggest that vulnerable sites of 2'-O-methylation are highly likely to undergo specific regulation during normal and pathological processes.


Assuntos
RNA Ribossômico/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Mapeamento Cromossômico , Análise por Conglomerados , Biologia Computacional/métodos , Genes p53 , Humanos , Metilação , Repetições de Microssatélites , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Interferência de RNA , RNA Ribossômico/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , RNA Ribossômico 5,8S/genética , RNA Ribossômico 5,8S/metabolismo , Ribossomos/química , Ribossomos/metabolismo
20.
Oncotarget ; 7(37): 59519-59534, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27517747

RESUMO

Small nucleolar RNAs (snoRNAs) are emerging as a novel class of proto-oncogenes and tumor suppressors; their involvement in tumorigenesis remains unclear. The box C/D snoRNAs U3 and U8 are upregulated in breast cancers. Here we characterize the function of human U3 and U8 in ribosome biogenesis, nucleolar structure, and tumorigenesis. We show in breast (MCF-7) and lung (H1944) cancer cells that U3 and U8 are required for pre-rRNA processing reactions leading, respectively, to synthesis of the small and large ribosomal subunits. U3 or U8 depletion triggers a remarkably potent p53-dependent anti-tumor stress response involving the ribosomal proteins uL5 (RPL11) and uL18 (RPL5). Interestingly, the nucleolar structure is more sensitive to perturbations in lung cancer than in breast cancer cells. We reveal in a mouse xenograft model that the tumorigenic potential of cancer cells is reduced in the case of U3 suppression and totally abolished upon U8 depletion. Tumors derived from U3-knockdown cells displayed markedly lower metabolic volume and activity than tumors derived from aggressive control cancer cells. Unexpectedly, metabolic tracer uptake by U3-suppressed tumors appeared more heterogeneous, indicating distinctive tumor growth properties that may reflect non-conventional regulatory functions of U3 (or fragments derived from it) in mRNA metabolism.


Assuntos
Neoplasias da Mama/genética , Sequência Conservada/genética , Neoplasias Pulmonares/genética , Precursores de RNA/genética , RNA Ribossômico/genética , RNA Nucleolar Pequeno/genética , Animais , Carcinogênese , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Nus , Processamento Pós-Transcricional do RNA , RNA Interferente Pequeno/genética , Proteínas Ribossômicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA