Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 76(3): 531-534, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35767272

RESUMO

In the combination antiretroviral era, there are limited data regarding the pathogenesis of histoplasmosis immune reconstitution inflammatory syndrome (IRIS) in people with human immunodeficiency virus (HIV). We immunologically characterized 10 cases of histoplasmosis, 4 of whom developed histoplasmosis IRIS. CD4+ T cells in histoplasmosis IRIS demonstrated a significant polyfunctional cytokine response to histoplasma antigen.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , Histoplasmose , Síndrome Inflamatória da Reconstituição Imune , Humanos , Linfócitos T CD4-Positivos , Síndrome da Imunodeficiência Adquirida/complicações , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico
2.
Cell Death Dis ; 13(12): 1029, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481780

RESUMO

The NAIP/NLRC4 inflammasome is classically associated with the detection of bacterial invasion to the cytosol. However, recent studies have demonstrated that NAIP/NLRC4 is also activated in non-bacterial infections, and in sterile inflammation. Moreover, in addition to the well-established model for the detection of bacterial proteins by NAIP proteins, the participation of other cytosolic pathways in the regulation of NAIP/NLRC4-mediated responses has been reported in distinct contexts. Using pharmacological inhibition and genetic deletion, we demonstrate here that cathepsins, well known for their involvement in NLRP3 activation, also regulate NAIP/NLRC4 responses to cytosolic flagellin in murine and human macrophages. In contrast to that observed for NLRP3 agonists, cathepsins inhibition did not reduce ASC speck formation or caspase-1 maturation in response to flagellin, ruling out their participation in the effector phase of NAIP/NLRC4 activation. Moreover, cathepsins had no impact on NF-κB-mediated priming of pro-IL-1ß, thus suggesting these proteases act downstream of the NAIP/NLRC4 inflammasome activation. IL-1ß levels secreted in response to flagellin were reduced in the absence of either cathepsins or Gasdermin-D (GSDMD), a molecule involved in the induction of pyroptosis and cytokines release. Notably, IL-1ß secretion was abrogated in the absence of both GSDMD and cathepsins, demonstrating their non-redundant roles for the optimal IL-1ß release in response to cytosolic flagellin. Given the central role of NAIP/NLRC4 inflammasomes in controlling infection and, also, induction of inflammatory pathologies, many efforts have been made to uncover novel molecules involved in their regulation. Thus, our findings bring together a relevant contribution by describing the role of cathepsins as players in the NAIP/NLRC4-mediated responses.


Assuntos
Proteínas Adaptadoras de Sinalização CARD , Proteínas de Ligação ao Cálcio , Catepsinas , Gasderminas , Lisossomos , Proteína Inibidora de Apoptose Neuronal , Animais , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Catepsinas/metabolismo , Deleção de Genes , Proteína Inibidora de Apoptose Neuronal/metabolismo , Gasderminas/metabolismo , Interleucina-1beta/metabolismo
3.
J Infect Dis ; 223(4): 645-654, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33471124

RESUMO

CD4 expression identifies a subset of mature T cells primarily assisting the germinal center reaction and contributing to CD8+ T-cell and B-cell activation, functions, and longevity. Herein, we present a family in which a novel variant disrupting the translation-initiation codon of the CD4 gene resulted in complete loss of membrane and plasma soluble CD4 in peripheral blood, lymph node, bone marrow, skin, and ileum of a homozygous proband. This inherited CD4 knockout disease illustrates the clinical and immunological features of a complete deficiency of any functional component of CD4 and its similarities and differences with other clinical models of primary or acquired loss of CD4+ T cells. The first inherited loss of any functional component of CD4, including soluble CD4, is clinically distinct from any other congenital or acquired CD4 T-cell defect and characterized by compensatory changes in T-cell subsets and functional impairment of B cells, monocytes, and natural killer cells.


Assuntos
Antígenos CD4/deficiência , Antígenos CD4/genética , Síndromes de Imunodeficiência/genética , Iniciação Traducional da Cadeia Peptídica/genética , Doenças da Imunodeficiência Primária/genética , Medula Óssea/imunologia , Medula Óssea/metabolismo , Antígenos CD4/análise , Antígenos CD4/sangue , Linfócitos T CD4-Positivos/imunologia , Códon de Iniciação , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Humanos , Íleo/imunologia , Íleo/metabolismo , Imunidade Inata , Síndromes de Imunodeficiência/imunologia , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária , Masculino , Monócitos/imunologia , Mutação de Sentido Incorreto , Linhagem , Doenças da Imunodeficiência Primária/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto Jovem
4.
Front Immunol ; 5: 309, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071770

RESUMO

Neuronal apoptosis inhibitory protein (NAIP)/NOD-like receptor (NLR) containing a caspase activating and recruitment domain (CARD) 4 (NLRC4) inflammasome complexes are activated in response to proteins from virulent bacteria that reach the cell cytosol. Specific NAIP proteins bind to the agonists and then physically associate with NLRC4 to form an inflammasome complex able to recruit and activate pro-caspase-1. NAIP5 and NAIP6 sense flagellin, component of flagella from motile bacteria, whereas NAIP1 and NAIP2 detect needle and rod components from bacterial type III secretion systems, respectively. Active caspase-1 mediates the maturation and secretion of the pro-inflammatory cytokines, IL-1ß and IL-18, and is responsible for the induction of pyroptosis, a pro-inflammatory form of cell death. In addition to these well-known effector mechanisms, novel roles have been described for NAIP/NLRC4 inflammasomes, such as phagosomal maturation, activation of inducible nitric oxide synthase, regulation of autophagy, secretion of inflammatory mediators, antibody production, activation of T cells, among others. These effector mechanisms mediated by NAIP/NLRC4 inflammasomes have been extensively studied in the context of resistance of infections and the potential of their agonists has been exploited in therapeutic strategies to non-infectious pathologies, such as tumor protection. Thus, this review will discuss current knowledge about the activation of NAIP/NLRC4 inflammasomes and their effector mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA